copper

Other names:	copper element
Inchi:	InChI=1S/Cu
InchiKey:	RYGMFSIKBFXOCR-UHFFFAOYSA-N
Formula:	Cu
SMILES:	[Cu]
Mol. weight [g/mol]:	63.55
CAS:	7440-50-8

Physical Properties

Property code	Value	Unit	Source
affp	655.30	kJ/mol	NIST Webbook
basg	632.40	kJ/mol	NIST Webbook
ea	1.24 ± 0.03	eV	NIST Webbook
ea	1.24 ± 0.00	eV	NIST Webbook
ea	1.23 ± 0.01	eV	NIST Webbook
ea	1.20 ± 0.15	eV	NIST Webbook
ea	1.24 ± 0.01	eV	NIST Webbook
hf	337.40 ± 1.20	kJ/mol	NIST Webbook
ie	7.73 ± 0.00	eV	NIST Webbook
ie	7.73	eV	NIST Webbook
ie	7.73	eV	NIST Webbook
ie	7.73 ± 0.00	eV	NIST Webbook
ie	7.73	eV	NIST Webbook
ie	7.72	eV	NIST Webbook
ie	7.73 ± 0.00	eV	NIST Webbook
ie	7.71 ± 0.05	eV	NIST Webbook
ie	8.00	eV	NIST Webbook
sgb	166.40 ± 0.00	J/mol×K	NIST Webbook
SS	33.15 ± 0.08	J/mol×K	NIST Webbook
tf	1357.95 ± 0.20	K	NIST Webbook

Temperature Dependent Properties

Property code

Source

cps	19.37	J/mol×K	133.00	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	24.71	J/mol×K	321.89	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.70	J/mol×K	320.22	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.72	J/mol×K	318.46	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	24.69	J/mol×K	316.78	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.64	J/mol×K	315.11	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.66	J/mol×K	313.43	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.64	J/mol×K	311.74	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	24.61	J/mol×K	310.06	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.55	J/mol×K	308.40	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.51	J/mol×K	306.73	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.52	J/mol×K	305.07	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	24.53	J/mol×K	303.39	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.51	J/mol×K	301.71	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.49	J/mol×K	300.02	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.47	J/mol×K	298.34	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	24.45	J/mol×K	296.66	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.41	J/mol×K	294.98	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.37	J/mol×K	293.31	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.36	J/mol×K	291.58	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	24.34	J/mol×K	289.91	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.32	J/mol×K	288.24	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.30	J/mol×K	286.57	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.28	J/mol×K	284.90	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	24.26	J/mol×K	283.23	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.23	J/mol×K	281.55	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.20	J/mol×K	279.88	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.18	J/mol×K	278.20	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	24.15	J/mol×K	276.52	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.13	J/mol×K	274.84	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.11	J/mol×K	273.15	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.09	J/mol×K	271.47	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	24.08	J/mol×K	269.77	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.03	J/mol×K	268.08	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	24.01	J/mol×K	266.39	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.97	J/mol×K	264.66	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	0.07	J/mol×K	10.51	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	0.08	J/mol×K	11.42	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	0.11	J/mol×K	12.43	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	0.14	J/mol×K	13.56	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	0.19	J/mol×K	14.81	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	0.23	J/mol×K	16.17	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	0.30	J/mol×K	17.69	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	0.41	J/mol×K	19.34	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	0.47	J/mol×K	20.19	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	

cps	0.56	J/mol×K	21.13	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	0.62	J/mol×K	21.94	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	0.74	J/mol×K	23.08	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	0.82	J/mol×K	23.76	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	1.06	J/mol×K	25.79	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	1.37	J/mol×K	28.01	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	1.76	J/mol×K	30.46	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	2.26	J/mol×K	33.17	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	

cps	2.85	J/mol×K	36.05	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	3.17	J/mol×K	37.57	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	3.50	J/mol×K	39.01	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	3.90	J/mol×K	40.74	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	4.71	J/mol×K	44.10	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	5.15	J/mol×K	45.89	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	5.55	J/mol×K	47.52	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	6.03	J/mol×K	49.38	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	6.93	J/mol×K	52.99	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	

cps	7.28	J/mol×K	54.47	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	7.84	J/mol×K	56.65	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	7.88	J/mol×K	56.87	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	8.58	J/mol×K	59.76	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	9.27	J/mol×K	62.64	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	10.14	J/mol×K	66.47	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	11.16	J/mol×K	71.22	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	12.13	J/mol×K	75.97	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	

cps	13.04	J/mol×K	80.79	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	13.89	J/mol×K	85.65	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	14.68	J/mol×K	90.55	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	15.41	J/mol×K	95.49	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	16.08	J/mol×K	100.46	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	16.71	J/mol×K	105.45	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	17.28	J/mol×K	110.46	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	17.81	J/mol×K	115.49	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	18.30	J/mol×K	120.54	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	

cps	18.75	J/mol×K	125.61	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	19.16	J/mol×K	130.68	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	19.47	J/mol×K	134.74	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	19.54	J/mol×K	135.77	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	19.82	J/mol×K	139.84	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	19.89	J/mol×K	140.87	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	20.16	J/mol×K	144.94	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	20.46	J/mol×K	150.05	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	

cps	20.75	J/mol×K	155.17	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	21.02	J/mol×K	160.30	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	21.27	J/mol×K	165.43	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	21.50	J/mol×K	170.57	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	21.72	J/mol×K	175.70	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	21.92	J/mol×K	180.85	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	22.11	J/mol×K	186.00	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	22.28	J/mol×K	191.15	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	22.35	J/mol×K	193.33	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	

cps	22.45	J/mol×K	196.30	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	22.51	J/mol×K	198.48	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	22.60	J/mol×K	201.46	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	22.66	J/mol×K	203.64	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	22.74	J/mol×K	206.62	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	22.79	J/mol×K	208.80	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	22.93	J/mol×K	213.96	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	23.06	J/mol×K	219.13	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	

cps	23.19	J/mol×K	224.29	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	23.31	J/mol×K	229.45	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	23.38	J/mol×K	232.56	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	23.41	J/mol×K	234.62	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	23.49	J/mol×K	237.73	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	23.53	J/mol×K	239.79	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	23.59	J/mol×K	242.89	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	23.68	J/mol×K	248.06	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	23.77	J/mol×K	253.24	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	

cps	23.86	J/mol×K	258.41	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	23.95	J/mol×K	263.59	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	24.02	J/mol×K	268.77	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	24.09	J/mol×K	273.95	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	24.16	J/mol×K	279.13	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	24.23	J/mol×K	284.31	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	24.31	J/mol×K	289.49	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	24.38	J/mol×K	294.67	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	

cps	24.41	J/mol×K	297.38	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	24.44	J/mol×K	299.85	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	24.49	J/mol×K	302.55	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	24.55	J/mol×K	307.73	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	24.61	J/mol×K	312.92	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	24.67	J/mol×K	318.10	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	24.73	J/mol×K	323.28	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	24.75	J/mol×K	325.89	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	24.78	J/mol×K	328.47	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	

cps	24.80	J/mol×K	331.06	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	24.85	J/mol×K	336.25	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	24.91	J/mol×K	341.44	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	24.95	J/mol×K	346.62	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	24.99	J/mol×K	351.80	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	25.03	J/mol×K	356.99	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	25.07	J/mol×K	363.06	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	25.11	J/mol×K	368.04	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	

cps	25.17	J/mol×K	373.02	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	25.25	J/mol×K	378.00	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	25.25	J/mol×K	382.98	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	25.30	J/mol×K	387.96	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	25.35	J/mol×K	392.94	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	25.41	J/mol×K	397.62	Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry	
cps	0.10	J/mol×K	14.20	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	0.21	J/mol×K	15.68	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	0.24	J/mol×K	16.38	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	0.24	J/mol×K	16.77	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	0.31	J/mol×K	17.80	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	0.40	J/mol×K	19.33	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	0.55	J/mol×K	21.00	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	0.70	J/mol×K	22.76	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	0.94	J/mol×K	24.89	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	1.26	J/mol×K	27.19	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	1.62	J/mol×K	29.54	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	2.07	J/mol×K	32.17	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	2.63	J/mol×K	35.07	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	2.80	J/mol×K	35.81	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	3.34	J/mol×K	38.36	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	3.48	J/mol×K	38.95	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	4.28	J/mol×K	42.31	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	5.17	J/mol×K	46.05	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	6.20	J/mol×K	50.21	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	7.13	J/mol×K	54.08	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	7.30	J/mol×K	54.62	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	7.63	J/mol×K	56.10	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	8.23	J/mol×K	58.53	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	8.36	J/mol×K	59.11	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	8.48	J/mol×K	59.50	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	9.43	J/mol×K	63.71	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	9.51	J/mol×K	63.87	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	10.60	J/mol×K	68.55	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	11.60	J/mol×K	73.28	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	12.55	J/mol×K	78.07	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	13.41	J/mol×K	82.91	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	14.23	J/mol×K	87.80	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	15.00	J/mol×K	92.71	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	15.06	J/mol×K	93.13	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	15.72	J/mol×K	97.66	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	15.70	J/mol×K	97.70	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	16.38	J/mol×K	102.69	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	16.96	J/mol×K	107.70	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	17.49	J/mol×K	112.73	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	18.01	J/mol×K	117.78	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	18.49	J/mol×K	122.84	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	18.95	J/mol×K	127.92	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	23.96	J/mol×K	262.97	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	19.74	J/mol×K	138.10	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	20.06	J/mol×K	143.21	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	20.36	J/mol×K	148.33	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	20.55	J/mol×K	151.40	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	20.66	J/mol×K	153.45	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	20.85	J/mol×K	156.50	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	20.95	J/mol×K	158.58	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	21.11	J/mol×K	161.61	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	21.37	J/mol×K	166.74	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	21.59	J/mol×K	171.89	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	21.77	J/mol×K	177.04	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	21.94	J/mol×K	182.20	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	22.15	J/mol×K	187.36	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	22.25	J/mol×K	192.53	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	22.35	J/mol×K	197.69	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	22.60	J/mol×K	202.86	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	22.66	J/mol×K	203.62	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	22.73	J/mol×K	208.02	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	22.81	J/mol×K	208.70	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	22.96	J/mol×K	213.88	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	23.11	J/mol×K	219.05	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	23.25	J/mol×K	224.22	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	23.33	J/mol×K	229.39	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	23.45	J/mol×K	234.57	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	23.52	J/mol×K	239.76	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	23.60	J/mol×K	244.94	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	23.62	J/mol×K	247.71	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	23.70	J/mol×K	250.12	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	23.76	J/mol×K	253.15	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	23.79	J/mol×K	255.31	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	23.83	J/mol×K	261.84	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	24.07	J/mol×K	270.43	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	24.13	J/mol×K	275.79	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	24.20	J/mol×K	280.97	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	24.27	J/mol×K	286.16	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	24.32	J/mol×K	291.35	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	24.39	J/mol×K	296.54	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	24.51	J/mol×K	301.73	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	24.55	J/mol×K	306.93	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	24.54	J/mol×K	312.11	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	24.59	J/mol×K	317.29	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	24.64	J/mol×K	322.48	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	24.69	J/mol×K	327.67	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	24.81	J/mol×K	332.85	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	24.86	J/mol×K	338.04	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	24.88	J/mol×K	343.25	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	25.04	J/mol×K	348.43	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	0.06	J/mol×K	10.25	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	
cps	0.08	J/mol×K	11.34	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	
cps	0.11	J/mol×K	12.58	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	
-----	------	---------	-------	--	
cps	0.15	J/mol×K	13.96	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	
cps	0.21	J/mol×K	15.48	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	
cps	0.28	J/mol×K	17.18	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	
cps	0.40	J/mol×K	19.06	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	
cps	0.56	J/mol×K	21.16	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	
cps	0.79	J/mol×K	23.49	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	
cps	1.09	J/mol×K	26.06	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	
cps	1.51	J/mol×K	28.95	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	

cps	2.06	J/mol×K	32.07	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	2.77	J/mol×K	35.61	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	3.64	J/mol×K	39.52	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	4.66	J/mol×K	43.85	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	5.85	J/mol×K	48.66	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	7.18	J/mol×K	54.01	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	8.63	J/mol×K	59.94	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	10.16	J/mol×K	66.51	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)

cps	11.68	J/mol×K	73.83	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	13.27	J/mol×K	81.93	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	14.71	J/mol×K	90.94	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	16.04	J/mol×K	100.89	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	17.30	J/mol×K	111.02	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	18.35	J/mol×K	121.12	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	19.24	J/mol×K	131.20	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	19.93	J/mol×K	141.26	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	20.52	J/mol×K	151.41	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)

cps	21.05	J/mol×K	161.51	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	21.50	J/mol×K	171.60	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	21.94	J/mol×K	181.69	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	22.25	J/mol×K	191.78	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	22.55	J/mol×K	201.87	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	22.82	J/mol×K	212.00	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	23.11	J/mol×K	222.11	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	23.37	J/mol×K	232.19	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)

cps	23.57	J/mol×K	242.21	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	23.79	J/mol×K	252.34	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	23.94	J/mol×K	262.41	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	24.10	J/mol×K	272.42	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	24.30	J/mol×K	282.60	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	24.41	J/mol×K	292.63	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	24.51	J/mol×K	302.69	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	24.49	J/mol×K	297.94	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	24.54	J/mol×K	302.72	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)

cps	24.55	J/mol×K	307.82	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	24.59	J/mol×K	312.89	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	24.70	J/mol×K	317.83	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	24.68	J/mol×K	322.91	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	24.79	J/mol×K	328.03	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	24.87	J/mol×K	333.05	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	24.81	J/mol×K	338.06	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	24.90	J/mol×K	343.13	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)

cps	25.01	J/mol×K	348.29	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	25.13	J/mol×K	353.34	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	25.09	J/mol×K	358.42	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	25.13	J/mol×K	363.50	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	25.23	J/mol×K	368.53	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	25.30	J/mol×K	373.56	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	25.40	J/mol×K	378.59	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	25.45	J/mol×K	383.61	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	25.48	J/mol×K	388.61	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)

cps	25.58	J/mol×K	393.64	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	25.68	J/mol×K	398.65	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	0.06	J/mol×K	10.47	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	0.07	J/mol×K	11.01	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	0.08	J/mol×K	11.56	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	0.10	J/mol×K	12.11	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	0.11	J/mol×K	12.68	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	0.13	J/mol×K	13.25	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	0.14	J/mol×K	13.82	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	0.16	J/mol×K	14.39	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	0.18	J/mol×K	14.97	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State

cps	0.21	J/mol×K	15.66	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	0.25	J/mol×K	16.44	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	0.29	J/mol×K	17.24	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	0.33	J/mol×K	18.03	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	0.38	J/mol×K	18.83	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	0.44	J/mol×K	19.63	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	0.52	J/mol×K	20.69	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	0.63	J/mol×K	22.00	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	0.77	J/mol×K	23.33	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	0.92	J/mol×K	24.67	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	1.09	J/mol×K	26.02	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	1.28	J/mol×K	27.37	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	1.49	J/mol×K	28.73	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	1.73	J/mol×K	30.23	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	2.00	J/mol×K	31.76	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	2.33	J/mol×K	33.45	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	2.67	J/mol×K	35.15	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	3.03	J/mol×K	36.87	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	3.41	J/mol×K	38.59	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	3.81	J/mol×K	40.32	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	4.24	J/mol×K	42.15	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	4.70	J/mol×K	44.09	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	5.18	J/mol×K	46.03	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	5.67	J/mol×K	47.98	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	6.16	J/mol×K	49.94	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	6.64	J/mol×K	51.90	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	7.13	J/mol×K	53.88	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	7.62	J/mol×K	55.86	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	8.10	J/mol×K	57.85	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	8.59	J/mol×K	59.85	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	9.06	J/mol×K	61.85	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	9.53	J/mol×K	63.86	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	9.99	J/mol×K	65.87	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	10.43	J/mol×K	67.89	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	10.88	J/mol×K	69.91	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	11.30	J/mol×K	71.93	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	11.72	J/mol×K	73.96	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	12.12	J/mol×K	75.99	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	12.51	J/mol×K	78.02	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	12.89	J/mol×K	80.06	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	13.04	J/mol×K	80.84	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	13.26	J/mol×K	82.11	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	13.39	J/mol×K	82.89	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	13.56	J/mol×K	83.86	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	13.79	J/mol×K	85.26	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	13.87	J/mol×K	85.69	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	14.20	J/mol×K	87.74	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	14.20	J/mol×K	87.76	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	14.53	J/mol×K	89.79	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	14.58	J/mol×K	90.09	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	14.85	J/mol×K	91.84	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	15.15	J/mol×K	93.89	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	15.45	J/mol×K	95.95	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	15.74	J/mol×K	98.02	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	16.01	J/mol×K	100.08	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	16.28	J/mol×K	102.15	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	16.55	J/mol×K	104.23	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	16.80	J/mol×K	106.31	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	17.04	J/mol×K	108.40	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	17.27	J/mol×K	110.48	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	17.50	J/mol×K	112.57	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	17.71	J/mol×K	114.67	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	17.93	J/mol×K	116.77	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	18.13	J/mol×K	118.86	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	18.33	J/mol×K	120.96	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.89	J/mol×K	259.58	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	18.70	J/mol×K	125.17	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	18.87	J/mol×K	127.28	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	19.05	J/mol×K	129.39	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	19.21	J/mol×K	131.50	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	19.37	J/mol×K	133.62	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	19.52	J/mol×K	135.73	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	19.68	J/mol×K	137.85	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	19.82	J/mol×K	139.97	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	19.97	J/mol×K	142.10	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	20.11	J/mol×K	144.22	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	20.25	J/mol×K	146.35	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	20.37	J/mol×K	148.48	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	20.50	J/mol×K	150.62	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	20.62	J/mol×K	152.75	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	20.74	J/mol×K	154.89	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	20.85	J/mol×K	157.02	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	20.97	J/mol×K	159.16	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	21.06	J/mol×K	161.30	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	21.17	J/mol×K	163.44	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	21.27	J/mol×K	165.58	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	21.38	J/mol×K	167.73	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	21.47	J/mol×K	169.88	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	21.56	J/mol×K	172.02	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	21.65	J/mol×K	174.17	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	21.73	J/mol×K	176.32	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	21.83	J/mol×K	178.48	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	21.90	J/mol×K	180.63	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	21.98	J/mol×K	182.78	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	22.07	J/mol×K	184.94	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	22.14	J/mol×K	187.09	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	22.22	J/mol×K	189.25	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	22.29	J/mol×K	191.41	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	22.37	J/mol×K	193.57	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	22.44	J/mol×K	195.73	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	22.51	J/mol×K	197.88	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	22.57	J/mol×K	200.04	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	22.64	J/mol×K	202.20	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	22.70	J/mol×K	204.37	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	22.77	J/mol×K	206.53	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	22.82	J/mol×K	208.70	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	22.88	J/mol×K	210.86	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	22.93	J/mol×K	213.03	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.00	J/mol×K	215.20	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.01	J/mol×K	216.22	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.04	J/mol×K	217.37	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.05	J/mol×K	217.96	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.09	J/mol×K	219.54	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.10	J/mol×K	219.92	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.14	J/mol×K	221.71	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.14	J/mol×K	221.87	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.19	J/mol×K	223.82	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.19	J/mol×K	223.88	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	23.22	J/mol×K	225.78	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.24	J/mol×K	226.05	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.27	J/mol×K	227.73	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.31	J/mol×K	229.68	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.36	J/mol×K	231.64	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.40	J/mol×K	233.60	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.44	J/mol×K	235.56	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.47	J/mol×K	237.52	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.52	J/mol×K	239.48	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.55	J/mol×K	241.44	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.58	J/mol×K	243.40	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.63	J/mol×K	245.36	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	23.65	J/mol×K	247.33	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.70	J/mol×K	249.30	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.73	J/mol×K	251.26	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.77	J/mol×K	253.23	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.80	J/mol×K	255.19	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.84	J/mol×K	257.16	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.87	J/mol×K	259.13	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.90	J/mol×K	261.10	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.95	J/mol×K	263.06	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.97	J/mol×K	265.03	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.00	J/mol×K	267.00	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.04	J/mol×K	268.97	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	24.06	J/mol×K	270.94	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.10	J/mol×K	272.91	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.12	J/mol×K	274.88	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.15	J/mol×K	276.86	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.17	J/mol×K	278.84	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.20	J/mol×K	280.81	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.23	J/mol×K	282.79	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.25	J/mol×K	284.76	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.27	J/mol×K	286.74	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.30	J/mol×K	288.72	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.34	J/mol×K	290.69	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.34	J/mol×K	292.66	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	24.38	J/mol×K	294.64	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.40	J/mol×K	296.61	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.42	J/mol×K	298.58	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.44	J/mol×K	300.56	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.47	J/mol×K	302.53	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.49	J/mol×K	304.51	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.52	J/mol×K	306.48	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.55	J/mol×K	308.45	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.57	J/mol×K	310.43	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.59	J/mol×K	312.40	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.61	J/mol×K	314.38	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.64	J/mol×K	316.35	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	24.64	J/mol×K	318.34	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.67	J/mol×K	320.31	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.68	J/mol×K	322.29	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.71	J/mol×K	324.26	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.74	J/mol×K	326.24	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.75	J/mol×K	328.22	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.77	J/mol×K	330.19	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.79	J/mol×K	332.17	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.79	J/mol×K	334.15	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.81	J/mol×K	336.12	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.82	J/mol×K	338.10	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.84	J/mol×K	340.08	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	24.85	J/mol×K	342.06	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.87	J/mol×K	344.04	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.89	J/mol×K	346.02	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.89	J/mol×K	348.01	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.90	J/mol×K	350.00	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.92	J/mol×K	351.98	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.94	J/mol×K	353.97	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.94	J/mol×K	355.95	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.95	J/mol×K	357.93	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.98	J/mol×K	359.91	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	24.99	J/mol×K	361.90	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	25.00	J/mol×K	363.89	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	25.01	J/mol×K	365.87	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	25.03	J/mol×K	367.86	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	0.05	J/mol×K	10.18	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.07	J/mol×K	10.60	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.07	J/mol×K	10.64	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	0.07	J/mol×K	10.83	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.08	J/mol×K	11.50	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.08	J/mol×K	11.55	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.09	J/mol×K	11.71	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	0.10	J/mol×K	12.41	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.10	J/mol×K	12.46	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.11	J/mol×K	12.62	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.13	J/mol×K	13.33	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	0.13	J/mol×K	13.38	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.13	J/mol×K	13.52	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.16	J/mol×K	14.24	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.16	J/mol×K	14.30	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	0.16	J/mol×K	14.43	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.19	J/mol×K	15.17	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.19	J/mol×K	15.23	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.20	J/mol×K	15.35	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	0.23	J/mol×K	16.10	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.23	J/mol×K	16.16	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.24	J/mol×K	16.27	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.27	J/mol×K	17.03	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	0.28	J/mol×K	17.09	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.28	J/mol×K	17.20	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.33	J/mol×K	17.97	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.33	J/mol×K	18.03	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	0.33	J/mol×K	18.13	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.38	J/mol×K	18.90	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.39	J/mol×K	18.96	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.39	J/mol×K	19.06	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	0.45	J/mol×K	19.84	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.45	J/mol×K	19.90	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.46	J/mol×K	19.99	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.50	J/mol×K	20.50	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	0.56	J/mol×K	21.24	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.57	J/mol×K	21.31	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.58	J/mol×K	21.40	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.63	J/mol×K	22.08	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	0.74	J/mol×K	23.18	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.75	J/mol×K	23.26	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.83	J/mol×K	23.95	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	0.96	J/mol×K	25.05	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	1.06	J/mol×K	25.83	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	1.21	J/mol×K	26.93	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	1.32	J/mol×K	27.72	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	1.49	J/mol×K	28.82	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	1.62	J/mol×K	29.62	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
-----	------	---------	-------	--	--
cps	1.81	J/mol×K	30.72	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	1.88	J/mol×K	31.57	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	2.16	J/mol×K	32.63	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	2.32	J/mol×K	33.43	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	2.32	J/mol×K	33.48	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	2.54	J/mol×K	34.55	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	2.70	J/mol×K	35.34	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	2.71	J/mol×K	35.49	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	2.94	J/mol×K	36.48	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	3.11	J/mol×K	37.28	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	3.14	J/mol×K	37.42	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	3.55	J/mol×K	39.22	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	3.58	J/mol×K	39.35	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	4.01	J/mol×K	41.16	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	4.04	J/mol×K	41.29	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	4.47	J/mol×K	43.10	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	4.50	J/mol×K	43.24	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	4.94	J/mol×K	45.05	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	4.98	J/mol×K	45.19	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	5.41	J/mol×K	46.96	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	5.44	J/mol×K	47.09	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	5.85	J/mol×K	48.74	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	5.88	J/mol×K	48.86	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	6.28	J/mol×K	50.40	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	6.31	J/mol×K	50.52	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	6.66	J/mol×K	51.95	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	6.68	J/mol×K	52.06	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	7.02	J/mol×K	53.42	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	7.05	J/mol×K	53.53	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	7.38	J/mol×K	54.82	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	7.41	J/mol×K	54.92	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	7.71	J/mol×K	56.15	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	7.73	J/mol×K	56.25	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	8.01	J/mol×K	57.44	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	8.03	J/mol×K	57.53	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	8.31	J/mol×K	58.67	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	8.32	J/mol×K	58.76	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	8.61	J/mol×K	59.86	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	8.63	J/mol×K	59.95	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	8.89	J/mol×K	61.02	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	8.90	J/mol×K	61.09	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	9.15	J/mol×K	62.13	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	9.15	J/mol×K	62.21	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	9.40	J/mol×K	63.22	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	9.40	J/mol×K	63.29	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	9.62	J/mol×K	64.28	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	9.65	J/mol×K	64.35	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	9.86	J/mol×K	65.31	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	9.88	J/mol×K	65.38	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	10.10	J/mol×K	66.32	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	10.12	J/mol×K	66.39	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	10.32	J/mol×K	67.31	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	10.33	J/mol×K	67.38	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	10.52	J/mol×K	68.27	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	10.54	J/mol×K	68.34	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	10.74	J/mol×K	69.22	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	10.76	J/mol×K	69.29	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	10.94	J/mol×K	70.15	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	10.94	J/mol×K	70.22	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	11.34	J/mol×K	72.11	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	11.35	J/mol×K	72.18	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	11.96	J/mol×K	75.13	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	11.97	J/mol×K	75.20	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	12.54	J/mol×K	78.16	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	12.56	J/mol×K	78.23	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	12.79	J/mol×K	79.46	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	13.11	J/mol×K	81.19	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	13.32	J/mol×K	82.43	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	13.84	J/mol×K	85.40	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	14.32	J/mol×K	88.27	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	14.75	J/mol×K	91.05	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	15.16	J/mol×K	93.75	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	15.54	J/mol×K	96.38	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	15.88	J/mol×K	98.95	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	16.21	J/mol×K	101.47	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	16.53	J/mol×K	103.93	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	16.82	J/mol×K	106.36	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	17.10	J/mol×K	108.74	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	17.36	J/mol×K	111.08	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	17.60	J/mol×K	113.39	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	17.84	J/mol×K	115.66	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	18.06	J/mol×K	117.91	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	18.27	J/mol×K	120.13	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	18.47	J/mol×K	122.32	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	18.66	J/mol×K	124.49	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	18.85	J/mol×K	126.63	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	19.02	J/mol×K	128.76	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	19.19	J/mol×K	130.86	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	19.35	J/mol×K	132.95	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	19.49	J/mol×K	135.02	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	19.65	J/mol×K	137.06	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	19.79	J/mol×K	139.10	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	19.92	J/mol×K	141.11	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	20.06	J/mol×K	143.11	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	20.18	J/mol×K	145.10	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	20.30	J/mol×K	147.08	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	20.42	J/mol×K	149.04	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	20.54	J/mol×K	150.99	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	20.64	J/mol×K	152.93	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	20.74	J/mol×K	154.86	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	20.85	J/mol×K	156.77	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	20.94	J/mol×K	158.68	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	21.04	J/mol×K	160.58	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	21.14	J/mol×K	162.46	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	21.22	J/mol×K	164.34	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	21.32	J/mol×K	166.21	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	21.39	J/mol×K	168.08	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	21.47	J/mol×K	169.93	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	21.55	J/mol×K	171.78	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	21.64	J/mol×K	173.62	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	21.71	J/mol×K	175.45	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	21.78	J/mol×K	177.28	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	21.84	J/mol×K	179.10	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	21.94	J/mol×K	180.91	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	21.99	J/mol×K	182.73	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	22.05	J/mol×K	184.53	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	22.11	J/mol×K	186.33	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	22.18	J/mol×K	188.12	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	22.24	J/mol×K	189.91	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	22.30	J/mol×K	191.69	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	22.38	J/mol×K	193.47	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	22.41	J/mol×K	195.26	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	22.46	J/mol×K	197.03	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	22.55	J/mol×K	198.81	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	22.60	J/mol×K	200.59	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	22.63	J/mol×K	202.38	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	22.68	J/mol×K	204.15	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	22.74	J/mol×K	205.92	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	22.78	J/mol×K	207.69	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	22.83	J/mol×K	209.46	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	22.90	J/mol×K	211.25	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	22.93	J/mol×K	213.02	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	22.97	J/mol×K	214.78	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.03	J/mol×K	216.54	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.05	J/mol×K	218.30	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	23.11	J/mol×K	220.06	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.14	J/mol×K	221.81	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.17	J/mol×K	223.56	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.23	J/mol×K	225.30	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	23.27	J/mol×K	227.04	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.29	J/mol×K	228.78	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.34	J/mol×K	230.51	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.38	J/mol×K	232.24	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.41	J/mol×K	233.96	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
-----	-------	---------	--------	--	--
cps	23.44	J/mol×K	235.68	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.48	J/mol×K	237.40	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.52	J/mol×K	239.16	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	23.56	J/mol×K	240.87	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.59	J/mol×K	242.58	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.62	J/mol×K	244.29	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.65	J/mol×K	246.00	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	23.68	J/mol×K	247.70	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.71	J/mol×K	249.40	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.75	J/mol×K	251.10	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.79	J/mol×K	252.80	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	23.81	J/mol×K	254.49	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.85	J/mol×K	256.19	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	23.86	J/mol×K	257.88	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
cps	18.52	J/mol×K	123.07	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.95	J/mol×K	261.27	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	

cps	24.75	J/mol×K	323.56	Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid, and Heptane (For Calibration of an Adiabatic Calorimeter)	
hvapt	332.70	kJ/mol	298.00	Thermodynamic activity measurements in nickel-base industrial alloys and steels by Knudsen cell Mass spectrometry	
psub	1.50e-05	kPa	1281.00	Vapor Pressure and Evaporation Coefficient Measurements at Elevated Temperatures with a Knudsen Cell and a Quartz Crystal Microbalance: New Data for SiO	
psub	2.60e-06	kPa	1229.00	Vapor Pressure and Evaporation Coefficient Measurements at Elevated Temperatures with a Knudsen Cell and a Quartz Crystal Microbalance: New Data for SiO	
psub	2.60e-06	kPa	1229.00	Vapor Pressure and Evaporation Coefficient Measurements at Elevated Temperatures with a Knudsen Cell and a Quartz Crystal Microbalance: New Data for SiO	

psub	6.50e-06	kPa	1249.00	Vapor Pressure and Evaporation Coefficient Measurements at Elevated Temperatures with a Knudsen Cell and a Quartz Crystal Microbalance: New Data for SiO	
psub	5.90e-06	kPa	1249.00	Vapor Pressure and Evaporation Coefficient Measurements at Elevated Temperatures with a Knudsen Cell and a Quartz Crystal Microbalance: New Data for SiO	
psub	1.00e-05	kPa	1267.00	Vapor Pressure and Evaporation Coefficient Measurements at Elevated Temperatures with a Knudsen Cell and a Quartz Crystal Microbalance: New Data for SiO	
psub	1.00e-05	kPa	1267.00	Vapor Pressure and Evaporation Coefficient Measurements at Elevated Temperatures with a Knudsen Cell and a Quartz Crystal Microbalance: New Data for SiO	
psub	1.40e-05	kPa	1281.00	Vapor Pressure and Evaporation Coefficient Measurements at Elevated Temperatures with a Knudsen Cell and a Quartz Crystal Microbalance: New Data for SiO	

psub	3.20e-06	kPa	1211.00	Vapor Pressure and Evaporation Coefficient Measurements at Elevated Temperatures with a Knudsen Cell and a Quartz Crystal Microbalance: New Data for SiO
psub	1.90e-05	kPa	1300.00	Vapor Pressure and Evaporation Coefficient Measurements at Elevated Temperatures with a Knudsen Cell and a Quartz Crystal Microbalance: New Data for SiO
psub	2.10e-05	kPa	1300.00	Vapor Pressure and Evaporation Coefficient Measurements at Elevated Temperatures with a Knudsen Cell and a Quartz Crystal Microbalance: New Data for SiO
psub	2.80e-05	kPa	1314.00	Vapor Pressure and Evaporation Coefficient Measurements at Elevated Temperatures with a Knudsen Cell and a Quartz Crystal Microbalance: New Data for SiO
psub	2.70e-05	kPa	1314.00	Vapor Pressure and Evaporation Coefficient Measurements at Elevated Temperatures with a Knudsen Cell and a Quartz Crystal Microbalance: New Data for SiO

psub	4.50e-05	kPa	1329.00	Vapor Pressure and Evaporation Coefficient Measurements at Elevated Temperatures with a Knudsen Cell and a Quartz Crystal Microbalance: New Data for SiO	
psub	3.80e-05	kPa	1329.00	Vapor Pressure and Evaporation Coefficient Measurements at Elevated Temperatures with a Knudsen Cell and a Quartz Crystal Microbalance: New Data for SiO	
psub	5.40e-05	kPa	1343.00	Vapor Pressure and Evaporation Coefficient Measurements at Elevated Temperatures with a Knudsen Cell and a Quartz Crystal Microbalance: New Data for SiO	
psub	7.00e-05	kPa	1356.00	Vapor Pressure and Evaporation Coefficient Measurements at Elevated Temperatures with a Knudsen Cell and a Quartz Crystal Microbalance: New Data for SiO	
psub	5.10e-05	kPa	1343.00	Vapor Pressure and Evaporation Coefficient Measurements at Elevated Temperatures with a Knudsen Cell and a Quartz Crystal Microbalance: New Data for SiO	
rhol	7884.00	kg/m3	1371.00	Correlation between excess volume and thermodynamic functions of liquid Pd-X (X = Fe, Cu and Ni) binary systems	

rhol	7849.00	kg/m3	1385.00	Correlation between excess volume and thermodynamic functions of liquid Pd-X (X = Fe, Cu and Ni) binary systems	
rhol	7875.00	kg/m3	1400.00	Correlation between excess volume and thermodynamic functions of liquid Pd-X (X = Fe, Cu and Ni) binary systems	
rhol	7821.00	kg/m3	1432.00	Correlation between excess volume and thermodynamic functions of liquid Pd-X (X = Fe, Cu and Ni) binary systems	
rhol	7819.00	kg/m3	1435.00	Correlation between excess volume and thermodynamic functions of liquid Pd-X (X = Fe, Cu and Ni) binary systems	
rhol	7806.00	kg/m3	1437.00	Correlation between excess volume and thermodynamic functions of liquid Pd-X (X = Fe, Cu and Ni) binary systems	
rhol	7827.00	kg/m3	1441.00	Correlation between excess volume and thermodynamic functions of liquid Pd-X (X = Fe, Cu and Ni) binary systems	
rhol	7799.00	kg/m3	1456.00	Correlation between excess volume and thermodynamic functions of liquid Pd-X (X = Fe, Cu and Ni) binary systems	

rhol	7828.00	kg/m3	1460.00	Correlation between excess volume and thermodynamic functions of liquid Pd-X (X = Fe, Cu and Ni) binary systems	
rhol	7826.00	kg/m3	1461.00	Correlation between excess volume and thermodynamic functions of liquid Pd-X (X = Fe, Cu and Ni) binary systems	
rhol	7770.00	kg/m3	1489.00	Correlation between excess volume and thermodynamic functions of liquid Pd-X (X = Fe, Cu and Ni) binary systems	
rhol	7792.00	kg/m3	1507.00	Correlation between excess volume and thermodynamic functions of liquid Pd-X (X = Fe, Cu and Ni) binary systems	
rhol	7755.00	kg/m3	1510.00	Correlation between excess volume and thermodynamic functions of liquid Pd-X (X = Fe, Cu and Ni) binary systems	
rhol	7716.00	kg/m3	1578.00	Correlation between excess volume and thermodynamic functions of liquid Pd-X (X = Fe, Cu and Ni) binary systems	
rhol	7673.00	kg/m3	1624.00	Correlation between excess volume and thermodynamic functions of liquid Pd-X (X = Fe, Cu and Ni) binary systems	

rhol	7665.00	kg/m3	1625.00	Correlation between excess volume and thermodynamic functions of liquid Pd-X (X = Fe, Cu and Ni) binary systems	
rhol	7628.00	kg/m3	1679.00	Correlation between excess volume and thermodynamic functions of liquid Pd-X (X = Fe, Cu and Ni) binary systems	

Correlations

Information	Value
Property code	руар
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.71193e+01
Coeff. B	-3.45544e+04
Coeff. C	-7.10100e+01
Temperature range (K), min.	1489.15
Temperature range (K), max.	2835.15

Sources

Experimental investigation and	https://www.doi.org/10.1016/j.fluid.2019.03.003
modeling of phase equilibria for Cu-Bi	http://webbook.nist.gov/cgi/cbook.cgi?ID=C7440508&Units=SI
distillation: Heat capacity of copper on the ITS-90	https://www.doi.org/10.1016/j.jct.2004.06.008
temperature scale using adiabatic	https://www.doi.org/10.1016/j.fluid.2016.02.026
modelling of phase equilibria for the	https://www.doi.org/10.1016/j.jct.2015.12.010
high the second se	https://www.doi.org/10.1016/j.tca.2012.03.022
tungsten-copper composites: Vapor Pressure and Evaporation	https://www.doi.org/10.1021/ie300199a
Coefficient Measurements at Elevated	https://www.doi.org/10.1016/i.ict.2017.01.015
nonche-baset where the allows and	https://www.doi.org/10.1016/j.tca.2008.02.023
bed in the second s	https://www.doi.org/10.1016/j.ict.2008.02.020
copper(II) pivalate:	https://www.doi.org/10.1016/j.jct.2005.02.017
of copper (II) beta-diketonates and	https://www.doi.org/10.1016/j.jct.2003.08.017
ternary Au Cu Sn system:	nttps://www.doi.org/10.1016/J.tca.2008.01.014
The Yaws Handbook of Vapor Pressure:	nttps://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

Thermochemistry on crystalline compounds bis-(n-dodecylammonium) that here is the index of the index of the problem is the index of the index of the problem is the index of the index of the problem is the index of the index of the problem is the index of the index of the problem is the index of the index of the problem is the index of the index of the problem is the index of the index of the problem is the index of the index of the problem is the index of the index of the problem is the index of the index of the problem is the index of the index of the problem is the index of the index of the problem is the index of the index of the problem is the index of the index of the problem is the index of the index of the problem is the index of the index of the problem is the index of the problem is the index of the problem is the index of the index of the index of the problem is the index of the problem is the index of the problem is the index of the index of

Legend

https://www.doi.org/10.1016/j.jct.2013.07.001 https://www.doi.org/10.1016/j.tca.2009.09.004 https://www.doi.org/10.1016/j.tca.2011.08.011 https://www.doi.org/10.1016/j.tca.2012.12.024 https://www.doi.org/10.1021/je100658y https://www.doi.org/10.1016/j.jct.2018.09.037 https://www.doi.org/10.1016/j.jct.2018.09.037 https://www.doi.org/10.1016/j.tca.2010.10.010 https://www.doi.org/10.1021/je060094d https://www.doi.org/10.1016/j.jct.2008.02.024 https://www.doi.org/10.1016/j.jct.2015.08.031 https://www.doi.org/10.1016/j.fluid.2015.07.043

affp:	Proton affinity
basg:	Gas basicity
cps:	Solid phase heat capacity
ea:	Electron affinity
hf:	Enthalpy of formation at standard conditions
hvapt:	Enthalpy of vaporization at a given temperature
ie:	Ionization energy
psub:	Sublimation pressure
pvap:	Vapor pressure
rhol:	Liquid Density
sgb:	Molar entropy at standard conditions (1 bar)
SS:	Solid phase molar entropy at standard conditions
tf:	Normal melting (fusion) point

Latest version available from:

https://www.chemeo.com/cid/68-186-1/copper.pdf

Generated by Cheméo on 2024-05-05 21:39:33.833377548 +0000 UTC m=+17234422.753954861.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.