Mesitylene

Other names: 1,3,5-Trimethylbenzene

1,3,5-trimethylbenzene (mesitylene)

2,4,6-Trimethylbenzene3,5-Dimethyltoluene

Benzene, 1,3,5-trimethyl-

FLEET-X NSC 9273

S-TRIMETHYLBENEZENE

TMB UN 2325

s-Trimethylbenzene sym-Trimethylbenzene

Inchi: InChi=1S/C9H12/c1-7-4-8(2)6-9(3)5-7/h4-6H,1-3H3

InchiKey: AUHZEENZYGFFBQ-UHFFFAOYSA-N

Formula: C9H12

SMILES: Cc1cc(C)cc(C)c1

Mol. weight [g/mol]: 120.19 CAS: 108-67-8

Physical Properties

Property code	Value	Unit	Source
af	0.3990		KDB
affp	835.10	kJ/mol	NIST Webbook
affp	836.20	kJ/mol	NIST Webbook
basg	808.60	kJ/mol	NIST Webbook
basg	808.80	kJ/mol	NIST Webbook
chl	-5202.70	kJ/mol	NIST Webbook
chl	-5193.10 ± 1.30	kJ/mol	NIST Webbook
cpl	207.43	J/mol×K	Thermodynamics of mixtures involving some (benzene derivatives + benzonitrile)
dm	0.10	debye	KDB
gf	118.00	kJ/mol	KDB
hcg	5193.14	kJ/mol	KDB
hcn	4929.045	kJ/mol	KDB
hf	-16.08	kJ/mol	KDB
hfus	12.33	kJ/mol	Joback Method

hvap	39.23	kJ/mol	Joback Method
ie	8.20 ± 0.10	eV	NIST Webbook
ie	8.65 ± 0.03	eV	NIST Webbook
ie	8.46	eV	NIST Webbook
ie	8.45 ± 0.05	eV	NIST Webbook
ie	8.45	eV	NIST Webbook
ie	8.42	eV	NIST Webbook
ie	8.42	eV	NIST Webbook
ie	8.41 ± 0.02	eV	NIST Webbook
ie	8.39 ± 0.01	eV	NIST Webbook
ie	8.55	eV	NIST Webbook
ie	8.40 ± 0.01	eV	NIST Webbook
ie	8.41 ± 0.01	eV	NIST Webbook
ie	8.47	eV	NIST Webbook
ie	8.40 ± 0.01	eV	NIST Webbook
ie	8.45 ± 0.05	eV	NIST Webbook
log10ws	-3.40		Estimated Solubility Method
log10ws	-3.40		Aqueous Solubility Prediction Method
logp	2.612		Crippen Method
mcvol	113.910	ml/mol	McGowan Method
рс	3130.00 ± 40.00	kPa	NIST Webbook
рс	3255.00 ± 0.32	kPa	NIST Webbook
рс	3127.00 ± 6.00	kPa	NIST Webbook
рс	3260.00 ± 9.81	kPa	NIST Webbook
рс	3161.90 ± 0.31	kPa	NIST Webbook
рс	3127.00	kPa	KDB
rinpol	963.00		NIST Webbook
rinpol	963.30		NIST Webbook
rinpol	973.50		NIST Webbook
rinpol	957.00		NIST Webbook
rinpol	972.00		NIST Webbook
rinpol	964.70		NIST Webbook
rinpol	965.00		NIST Webbook
rinpol	965.40		NIST Webbook
rinpol	964.60		NIST Webbook
rinpol	965.00		NIST Webbook
rinpol	965.00		NIST Webbook
rinpol	967.10		NIST Webbook
rinpol	969.00		NIST Webbook
rinpol	965.50		NIST Webbook
rinpol	965.50		NIST Webbook
rinpol	962.70		NIST Webbook
rinpol	988.00		NIST Webbook

rinpol	1000.00	NIST Webbook
rinpol	990.00	NIST Webbook
rinpol	1000.00	NIST Webbook
·	1000.00	NIST Webbook
rinpol	986.00	NIST Webbook
rinpol		
rinpol	967.00	NIST Webbook
rinpol	952.10	NIST Webbook
rinpol	967.60	NIST Webbook
rinpol	971.00	NIST Webbook
rinpol	964.00	NIST Webbook
rinpol	971.20	NIST Webbook
rinpol	965.30	NIST Webbook
rinpol	1001.00	NIST Webbook
rinpol	1001.00	NIST Webbook
rinpol	1007.00	NIST Webbook
rinpol	1013.00	NIST Webbook
rinpol	998.00	NIST Webbook
rinpol	968.00	NIST Webbook
rinpol	974.00	NIST Webbook
rinpol	995.00	NIST Webbook
rinpol	1002.00	NIST Webbook
rinpol	996.40	NIST Webbook
rinpol	955.00	NIST Webbook
rinpol	970.10	NIST Webbook
rinpol	998.00	NIST Webbook
rinpol	981.00	NIST Webbook
rinpol	953.00	NIST Webbook
rinpol	959.00	NIST Webbook
rinpol	960.00	NIST Webbook
rinpol	995.00	NIST Webbook
rinpol	961.80	NIST Webbook
rinpol	969.00	NIST Webbook
rinpol	970.00	NIST Webbook
rinpol	996.00	NIST Webbook
rinpol	1002.00	NIST Webbook
rinpol	996.00	NIST Webbook
rinpol	956.00	NIST Webbook
rinpol	962.00	NIST Webbook
rinpol	996.00	NIST Webbook
rinpol	1006.00	NIST Webbook
rinpol	975.00	NIST Webbook
rinpol	959.90	NIST Webbook
rinpol	996.00	NIST Webbook
rinpol	961.50	NIST Webbook
Шрог	001.00	THO! WODDOOK

rinnol	964.90	NIST Webbook
rinpol rinpol	967.10	NIST Webbook
•	948.90	NIST Webbook
rinpol		NIST Webbook
rinpol	974.20	
rinpol	996.00	NIST Webbook
rinpol	994.00	NIST Webbook
rinpol	954.50	NIST Webbook
rinpol	958.00	NIST Webbook
rinpol	984.30	NIST Webbook
rinpol	958.00	NIST Webbook
rinpol	964.10	NIST Webbook
rinpol	955.50	NIST Webbook
rinpol	961.50	NIST Webbook
rinpol	964.90	NIST Webbook
rinpol	967.10	NIST Webbook
rinpol	954.28	NIST Webbook
rinpol	954.69	NIST Webbook
rinpol	955.00	NIST Webbook
rinpol	963.00	NIST Webbook
rinpol	954.56	NIST Webbook
rinpol	956.80	NIST Webbook
rinpol	953.66	NIST Webbook
rinpol	953.27	NIST Webbook
rinpol	953.00	NIST Webbook
rinpol	953.37	NIST Webbook
rinpol	953.00	NIST Webbook
rinpol	997.20	NIST Webbook
rinpol	978.22	NIST Webbook
rinpol	956.00	NIST Webbook
rinpol	985.00	NIST Webbook
rinpol	967.10	NIST Webbook
rinpol	967.00	NIST Webbook
rinpol	968.00	NIST Webbook
rinpol	963.00	NIST Webbook
rinpol	963.00	NIST Webbook
rinpol	967.00	NIST Webbook
rinpol	967.00	NIST Webbook
rinpol	954.00	NIST Webbook
rinpol	967.00	NIST Webbook
rinpol	972.00	NIST Webbook
rinpol	958.00	NIST Webbook
rinpol	972.00	NIST Webbook
rinpol	968.00	NIST Webbook
rinpol	961.00	NIST Webbook
Пірог	001.00	THOTAVODDON

rinpol	965.00	NIST Webbook
rinpol	956.00	NIST Webbook
rinpol	969.00	NIST Webbook
rinpol	972.00	NIST Webbook
·	1001.00	NIST Webbook NIST Webbook
rinpol	961.00	NIST Webbook
rinpol		NIST Webbook
rinpol	996.00	
rinpol	996.00	NIST Webbook
rinpol	992.00	NIST Webbook
rinpol	989.00	NIST Webbook
rinpol	1001.00	NIST Webbook
rinpol	1001.00	NIST Webbook
rinpol	996.00	NIST Webbook
rinpol	979.00	NIST Webbook
rinpol	979.00	NIST Webbook
rinpol	960.00	NIST Webbook
rinpol	989.00	NIST Webbook
rinpol	974.00	NIST Webbook
rinpol	1003.00	NIST Webbook
rinpol	985.00	NIST Webbook
rinpol	965.00	NIST Webbook
rinpol	952.00	NIST Webbook
rinpol	971.00	NIST Webbook
rinpol	964.00	NIST Webbook
rinpol	994.00	NIST Webbook
rinpol	994.00	NIST Webbook
rinpol	994.00	NIST Webbook
rinpol	995.00	NIST Webbook
rinpol	963.00	NIST Webbook
rinpol	956.18	NIST Webbook
rinpol	958.00	NIST Webbook
rinpol	954.00	NIST Webbook
rinpol	957.00	NIST Webbook
rinpol	974.70	NIST Webbook
rinpol	962.00	NIST Webbook
rinpol	952.00	NIST Webbook
rinpol	956.00	NIST Webbook
rinpol	956.00	NIST Webbook
rinpol	940.00	NIST Webbook
rinpol	960.00	NIST Webbook
rinpol	963.00	NIST Webbook
rinpol	995.00	NIST Webbook
rinpol	996.00	NIST Webbook
rinpol	999.00	NIST Webbook
IIIIpor	000.00	THO! WODDOOK

rinnol	996.00	NIST Webbook
rinpol rinpol	995.00	NIST Webbook
	994.00	NIST Webbook
rinpol		NIST Webbook
rinpol	994.00	
rinpol	992.00	NIST Webbook
rinpol	996.00	NIST Webbook
rinpol	997.00	NIST Webbook
rinpol	964.00	NIST Webbook
rinpol	964.00	NIST Webbook
rinpol	956.00	NIST Webbook
rinpol	963.00	NIST Webbook
rinpol	953.00	NIST Webbook
rinpol	1003.00	NIST Webbook
rinpol	962.00	NIST Webbook
rinpol	963.00	NIST Webbook
rinpol	963.00	NIST Webbook
rinpol	985.00	NIST Webbook
rinpol	956.00	NIST Webbook
rinpol	964.00	NIST Webbook
rinpol	954.00	NIST Webbook
rinpol	969.00	NIST Webbook
rinpol	954.00	NIST Webbook
rinpol	962.60	NIST Webbook
rinpol	968.90	NIST Webbook
rinpol	966.50	NIST Webbook
rinpol	967.40	NIST Webbook
rinpol	967.70	NIST Webbook
rinpol	976.00	NIST Webbook
rinpol	952.00	NIST Webbook
rinpol	953.00	NIST Webbook
rinpol	954.00	NIST Webbook
rinpol	960.00	NIST Webbook
rinpol	973.00	NIST Webbook
rinpol	968.00	NIST Webbook
rinpol	973.00	NIST Webbook
rinpol	968.00	NIST Webbook
rinpol	173.80	NIST Webbook
rinpol	152.10	NIST Webbook
rinpol	974.00	NIST Webbook
rinpol	968.00	NIST Webbook
rinpol	963.00	NIST Webbook
rinpol	960.00	NIST Webbook
rinpol	972.00	NIST Webbook
rinpol	953.10	NIST Webbook
IIIIpor	000.10	THO I WOODOOK

rinnal	052.70	NICT Wohlank
rinpol rinpol	952.70 966.00	NIST Webbook NIST Webbook
	968.00	NIST Webbook NIST Webbook
rinpol		
rinpol	975.00	NIST Webbook
rinpol	968.00	NIST Webbook
rinpol	963.00	NIST Webbook
rinpol	962.00	NIST Webbook
rinpol	963.00	NIST Webbook
rinpol	969.00	NIST Webbook
rinpol	967.30	NIST Webbook
rinpol	962.40	NIST Webbook
rinpol	962.00	NIST Webbook
rinpol	962.00	NIST Webbook
rinpol	952.00	NIST Webbook
rinpol	952.00	NIST Webbook
rinpol	969.00	NIST Webbook
rinpol	981.30	NIST Webbook
rinpol	976.10	NIST Webbook
rinpol	972.10	NIST Webbook
rinpol	963.80	NIST Webbook
rinpol	953.33	NIST Webbook
rinpol	952.20	NIST Webbook
rinpol	947.50	NIST Webbook
rinpol	984.80	NIST Webbook
rinpol	979.50	NIST Webbook
rinpol	956.20	NIST Webbook
rinpol	967.90	NIST Webbook
rinpol	988.00	NIST Webbook
ripol	1221.00	NIST Webbook
ripol	1251.00	NIST Webbook
ripol	1253.00	NIST Webbook
ripol	1248.00	NIST Webbook
ripol	1249.00	NIST Webbook
ripol	1254.00	NIST Webbook
ripol	1257.00	NIST Webbook
ripol	1270.00	NIST Webbook
ripol	1281.00	NIST Webbook
ripol	1297.00	NIST Webbook
ripol	1233.00	NIST Webbook
ripol	1245.00	NIST Webbook
Прог	12 10.00	THO! WOODOOK

ripol	1220.00	NIST Webbook
ripol	1246.00	NIST Webbook
ripol	1287.00	NIST Webbook
ripol	1290.00	NIST Webbook
ripol	1288.00	NIST Webbook
ripol	1242.00	NIST Webbook
ripol	1291.00	NIST Webbook
ripol	1251.00	NIST Webbook
ripol	1254.00	NIST Webbook
ripol	1240.00	NIST Webbook
ripol	1251.00	NIST Webbook
ripol	1229.00	NIST Webbook
ripol	1221.00	NIST Webbook
ripol	1220.00	NIST Webbook
ripol	1271.00	NIST Webbook
ripol	1242.00	NIST Webbook
ripol	1271.00	NIST Webbook
·	1228.00	NIST Webbook
ripol	1275.10	NIST Webbook
ripol		NIST Webbook
ripol	1249.00	NIST Webbook
ripol	1246.00	
ripol	1242.20	NIST Webbook
ripol	1250.00	NIST Webbook
ripol	1283.00	NIST Webbook
ripol	1248.00	NIST Webbook
ripol	1252.00	NIST Webbook
ripol	1237.00	NIST Webbook
ripol	1268.30	NIST Webbook
ripol	1254.00	NIST Webbook
ripol	1237.00	NIST Webbook
ripol	1255.00	NIST Webbook
ripol	1279.00	NIST Webbook
ripol	1271.00	NIST Webbook
ripol	1263.00	NIST Webbook
ripol	1210.00	NIST Webbook
ripol	1297.00	NIST Webbook
ripol	1287.30	NIST Webbook
ripol	1251.00	NIST Webbook
ripol	1220.30	NIST Webbook
ripol	1236.90	NIST Webbook
ripol	1300.70	NIST Webbook
ripol	1217.00	NIST Webbook
ripol	1241.00	NIST Webbook
ripol	1220.00	NIST Webbook

ripol	1242.00		NIST Webbook
sg	385.30 ± 0.63	J/mol×K	NIST Webbook
sl	273.55	J/mol×K	NIST Webbook
tb	437.89	K	KDB
tb	437.83	K	Phase equilibria of three binary systems containing 2,5-dimethylthiophene and 2-ethylthiophene in hydrocarbons
tc	637.30	K	KDB
tf	228.40	K	KDB
tf	228.23	K	Aqueous Solubility Prediction Method
tt	228.42 ± 0.01	K	NIST Webbook
VC	0.431	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	229.86	J/mol×K	476.96	Joback Method
cpg	216.81	J/mol×K	441.96	Joback Method
cpg	285.90	J/mol×K	651.95	Joback Method
cpg	275.86	J/mol×K	616.95	Joback Method
cpg	265.25	J/mol×K	581.96	Joback Method
cpg	254.06	J/mol×K	546.96	Joback Method
cpg	242.27	J/mol×K	511.96	Joback Method
cpl	207.85	J/mol×K	298.15	NIST Webbook
cpl	205.50	J/mol×K	294.99	NIST Webbook
cpl	211.30	J/mol×K	298.00	NIST Webbook
cpl	213.00	J/mol×K	298.00	NIST Webbook
cpl	209.33	J/mol×K	298.15	NIST Webbook
cpl	201.46	J/mol×K	299.80	NIST Webbook
cpl	206.50	J/mol×K	298.00	NIST Webbook
cpl	207.69	J/mol×K	298.15	NIST Webbook
cpl	207.66	J/mol×K	298.15	NIST Webbook

dvisc	0.0007540	Paxs	288.15	Viscosities, Densities, and Speeds of Sound of Binary Mixtures of Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene with Anisole at (288.15, 293.15, 298.15, and 303.15) K
dvisc	0.0005792	Paxs	308.15	Ultrasonic and viscometric study of molecular interactions in binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl-2-propanol at different temperatures
dvisc	0.0005066	Paxs	318.15	Ultrasonic and viscometric study of molecular interactions in binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl-2-propanol at different temperatures
dvisc	0.0006572	Pa×s	298.15	Ultrasonic and viscometric study of molecular interactions in binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl-2-propanol at different temperatures

dvisc	0.0007050	Paxs	293.15	Viscosities, Densities, and Speeds of Sound of Binary Mixtures of Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene with Anisole at (288.15, 293.15, 298.15, and	
dvisc	0.0006610	Paxs	298.15	303.15) K Viscosities, Densities, and Speeds of Sound of Binary Mixtures of Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene with Anisole at (288.15, 293.15, 298.15, and 303.15) K	
dvisc	0.0006210	Paxs	303.15	Viscosities, Densities, and Speeds of Sound of Binary Mixtures of Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene with Anisole at (288.15, 293.15, 298.15, and 303.15) K	
dvisc	0.0008500	Paxs	278.15	Shear Viscosity of Mixtures of r-Tocopherol with Nonpolar Solvents	
dvisc	0.008000	Paxs	284.15	Shear Viscosity of Mixtures of r-Tocopherol with Nonpolar Solvents	
dvisc	0.0007500	Paxs	290.15	Shear Viscosity of Mixtures of r-Tocopherol with Nonpolar Solvents	

dvisc	0.0006300	Paxs	296.15	Shear Viscosity of Mixtures of r-Tocopherol with Nonpolar Solvents	
dvisc	0.0005700	Paxs	302.15	Shear Viscosity of Mixtures of r-Tocopherol with Nonpolar Solvents	
dvisc	0.0005300	Paxs	308.15	Shear Viscosity of Mixtures of r-Tocopherol with Nonpolar Solvents	
dvisc	0.0004900	Paxs	314.15	Shear Viscosity of Mixtures of r-Tocopherol with Nonpolar Solvents	
dvisc	0.0004600	Paxs	320.15	Shear Viscosity of Mixtures of r-Tocopherol with Nonpolar Solvents	
dvisc	0.0004400	Paxs	325.15	Shear Viscosity of Mixtures of r-Tocopherol with Nonpolar Solvents	
dvisc	0.0004100	Paxs	330.15	Shear Viscosity of Mixtures of r-Tocopherol with Nonpolar Solvents	
dvisc	0.0004000	Paxs	335.15	Shear Viscosity of Mixtures of r-Tocopherol with Nonpolar Solvents	
dvisc	0.0003400	Paxs	350.15	Shear Viscosity of Mixtures of r-Tocopherol with Nonpolar Solvents	
dvisc	0.0003500	Paxs	345.15	Shear Viscosity of Mixtures of r-Tocopherol with Nonpolar Solvents	
dvisc	0.0003900	Paxs	340.15	Shear Viscosity of Mixtures of r-Tocopherol with Nonpolar Solvents	
hfust	9.51	kJ/mol	228.40	NIST Webbook	
hfust	9.51	kJ/mol	228.40	NIST Webbook	
hvapt	46.20 ± 1.30	kJ/mol	319.00	NIST Webbook	
hvapt	51.10	kJ/mol	261.50	NIST Webbook	

hvapt	47.70	kJ/mol	286.00	NIST Webbook
hvapt	43.90	kJ/mol	399.50	NIST Webbook
hvapt	49.70	kJ/mol	302.50	NIST Webbook
hvapt	43.50	kJ/mol	386.00	NIST Webbook
pvap	101.33	kPa	437.83	Phase equilibria of three binary systems containing 2,5-dimethylthiophene and 2-ethylthiophene in hydrocarbons
rfi	1.49180		308.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K
rfi	1.49440		303.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K
rfi	1.49690		298.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K

rfi	1.49950	293.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.50200	288.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.49180	308.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.48930	313.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	

rfi	1.48680	318.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.49693	298.15	Density, Speed of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes with o-Xylene, m-Xylene, p-Xylene, and Mesitylene at T = (298.15 and 313.15) K	
rfi	1.48923	313.15	Density, Speed of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes with o-Xylene, m-Xylene, p-Xylene, and Mesitylene at T = (298.15 and 313.15) K	
rfi	1.49760	298.15	Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T = (288.15 to 303.15) K	
rfi	1.49684	298.15	KDB	

rfi	1.49682	298.15	Effect of Temperature on the Change of Refractive Index on Mixing for Butyl Acetate + Aromatic Hydrocarbons	
rfi	1.49580	298.15	Thermodynamic properties of (tetradecane + benzene, + toluene, + chlorobenzene, + anisole) binary mixtures at T = (298.15, 303.15, and 308.15) K	
rfi	1.48980	298.15	Thermodynamic properties of (tetradecane + benzene, + toluene, + chlorobenzene, + anisole) binary mixtures at T = (298.15, 303.15, and 308.15) K	
rfi	1.49280	303.15	Thermodynamic properties of (tetradecane + benzene, + toluene, + chlorobenzene, + anisole) binary mixtures at T = (298.15, 303.15, and 308.15) K	
rfi	1.48980	308.15	Thermodynamic properties of (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures at T = (298.15, 303.15, and 308.15) K	
rfi	1.48680	318.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	

rfi	1.49360	303.15	Excess and deviation properties for the binary mixtures of methylcyclohexane with benzene, toluene, p-xylene, mesitylene, and anisole at T = (298.15, 303.15, and 308.15) K	
rfi	1.49130	308.15	Excess and deviation properties for the binary mixtures of methylcyclohexane with benzene, toluene, p-xylene, mesitylene, and anisole at T = (298.15, 303.15, and 308.15) K	
rfi	1.50450	288.15	Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T = (288.15 to 303.15) K	
rfi	1.49930	293.15	Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T = (288.15 to 303.15) K	
rfi	1.48930	313.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	

rfi	1.49480	303.15	Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T = (288.15 to 303.15) K	
rfi	1.49670	298.15	Excess molar volumes of (octane + benzene, or toluene, or 1,3-xylene, or 1,3,5-trimethylbenzene) at temperatures between (298.15 and 328.15) K	
rfi	1.49920	293.10	Liquid-Liquid Equilibria Measurements for Ternary System of Hexadecane + 1,3,5-Trimethylbenzene + N-Methyl-2-pyrrolidone	
rfi	1.50200	288.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	
rfi	1.49950	293.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	
rfi	1.49690	298.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	

rfi	1.49440		303.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	
rfi	1.49600		298.15	Excess and deviation properties for the binary mixtures of methylcyclohexane with benzene, toluene, p-xylene, mesitylene, and anisole at T = (298.15, 303.15, and 308.15) K	
rhol	853.30	kg/m3	308.15	Densities and Dynamic Viscosities of Alicyclic Cyclohexane with Toluene, o-Xylene, and Mesitylene at T = (303.15 to 323.15) K and Atmospheric Pressure	
rhol	859.70	kg/m3	298.20	Liquid-liquid equilibrium for methyl butyl ketone + o-, m-, p-cresol + water ternary systems and COSMO-SAC predictions	
rhol	852.66	kg/m3	308.15	Acoustic and thermodynamic properties of binary mixtures of 1-nonanol with o-xylene, m-xylene, p-xylene, ethylbenzene and mesitylene at T = (298.15 and 308.15) K	

rhol	860.86	kg/m3	298.15	Acoustic and thermodynamic properties of binary mixtures of 1-nonanol with o-xylene, m-xylene, p-xylene, ethylbenzene and mesitylene at T = (298.15 and 308.15) K
rhol	840.90	kg/m3	323.15	Densities and Dynamic Viscosities of Alicyclic Cyclohexane with Toluene, o-Xylene, and Mesitylene at T = (303.15 to 323.15) K and Atmospheric Pressure
rhol	818.50	kg/m3	343.15	Densities and volumetric properties of (N-acetylmorpholine + aromatic hydrocarbon) binary mixtures from T = (293.15 to 343.15) K
rhol	826.60	kg/m3	333.15	Densities and volumetric properties of (N-acetylmorpholine + aromatic hydrocarbon) binary mixtures from T = (293.15 to 343.15) K
rhol	861.45	kg/m3	298.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K

rhol	861.03	kg/m3	298.15	Excess Molar Volumes and Surface Tensions of 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene with 1-Butanol, 2-Methyl-1-propanol, 2-Butanol, and 2-Methyl-2-propanol at 298.15 K
rhol	861.03	kg/m3	298.15	Excess Molar volumes and Surface Tensions of Trimethylbenzene with Tetrahydrofuran Tetrachloromethane and Dimethylsulfoxide at 298.15 K
rhol	845.10	kg/m3	318.15	Densities and Dynamic Viscosities of Alicyclic Cyclohexane with Toluene, o-Xylene, and Mesitylene at T = (303.15 to 323.15) K and Atmospheric Pressure
rhol	865.00	kg/m3	293.00	KDB
rhol	869.28	kg/m3	288.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K
rhol	865.37	kg/m3	293.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K

rhol	842.80	kg/m3	313.15	Densities and volumetric properties of (N-acetylmorpholine + aromatic hydrocarbon) binary mixtures from T = (293.15 to 343.15) K
rhol	857.54	kg/m3	303.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K
rhol	853.63	kg/m3	308.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K
rhol	849.71	kg/m3	313.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K
rhol	845.80	kg/m3	318.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K

rhol	865.10	kg/m3	293.15	Densities and volumetric properties of (N-acetylmorpholine + aromatic hydrocarbon) binary mixtures from T = (293.15 to 343.15) K	
rhol	856.90	kg/m3	303.15	Densities and volumetric properties of (N-acetylmorpholine + aromatic hydrocarbon) binary mixtures from T = (293.15 to 343.15) K	
rhol	849.30	kg/m3	313.15	Densities and Dynamic Viscosities of Alicyclic Cyclohexane with Toluene, o-Xylene, and Mesitylene at T = (303.15 to 323.15) K and Atmospheric Pressure	
rhol	834.70	kg/m3	323.15	Densities and volumetric properties of (N-acetylmorpholine + aromatic hydrocarbon) binary mixtures from T = (293.15 to 343.15) K	
rhol	857.40	kg/m3	303.15	Densities and Dynamic Viscosities of Alicyclic Cyclohexane with Toluene, o-Xylene, and Mesitylene at T = (303.15 to 323.15) K and Atmospheric Pressure	
speedsl	1339.80	m/s	298.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	

speedsl	1300.20	m/s	308.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1280.40	m/s	313.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1263.00	m/s	318.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1360.40	m/s	293.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1319.60	m/s	303.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	

srf	0.03	N/m	303.15	Densities, surface tensions, and derived surface thermodynamics properties of (trimethylbenzene + propyl acetate, or butyl acetate) from T = 298.15 K to 313.15 K
srf	0.03	N/m	313.15	Excess Molar Volumes and Surface Tensions of Trimethylbenzene + Ethylene Glycol Ester at 298.15 K and 313.15 K
srf	0.03	N/m	298.15	Excess Molar Volumes and Surface Tensions of Trimethylbenzene + Ethylene Glycol Ester at 298.15 K and 313.15 K
srf	0.03	N/m	298.15	Densities and Surface Tensions of Trimethylbenzene + Dimethyl Carbonate or + Diethyl Carbonate at 298.15 K and 313.15 K
srf	0.03	N/m	313.15	Densities and Surface Tensions of Trimethylbenzene + Dimethyl Carbonate or + Diethyl Carbonate at 298.15 K and 313.15 K
srf	0.03	N/m	308.15	Excess Molar Volumes and Surface Tensions of 1,2,4- Trimethylbenzene and 1,3,5- Trimethylbenzene with 1,1-Diethoxyethane and 2,2-Dimethoxypropane at (298.15, 308.15, and 313.15) K

srf	0.03	N/m	313.15	Excess Molar Volumes and Surface Tensions of 1,2,4- Trimethylbenzene and 1,3,5- Trimethylbenzene with 1,1-Diethoxyethane and 2,2-Dimethoxypropane at (298.15, 308.15, and 313.15) K
srf	0.03	N/m	298.15	Excess Molar Volumes and Surface Tensions of 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene with Isopropyl Acetate and Isobutyl Acetate at (298.15, 308.15, and 313.15) K
srf	0.03	N/m	308.15	Excess Molar Volumes and Surface Tensions of 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene with Isopropyl Acetate and Isobutyl Acetate at (298.15, 308.15, and 313.15) K
srf	0.03	N/m	313.15	Excess Molar Volumes and Surface Tensions of 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene with Isopropyl Acetate and Isobutyl Acetate at (298.15, 308.15, and 313.15) K
srf	0.03	N/m	308.15	Densities, surface tensions, and derived surface thermodynamics properties of (trimethylbenzene + propyl acetate, or butyl acetate) from T = 298.15 K to 313.15 K

srf	0.03	N/m	298.15	Densities,
311	0.00	IWIII	200.10	surface tensions, and derived surface thermodynamics properties of (trimethylbenzene + propyl acetate, or butyl acetate) from T = 298.15 K to 313.15 K
srf	0.03	N/m	313.15	Densities, surface tensions, and derived surface thermodynamics properties of (trimethylbenzene + propyl acetate, or butyl acetate) from T = 298.15 K to 313.15 K
srf	0.03	N/m	298.15	Excess Molar Volumes and Surface Tensions of 1,2,4- Trimethylbenzene and 1,3,5- Trimethylbenzene with 1,1-Diethoxyethane and 2,2-Dimethoxypropane at (298.15, 308.15, and 313.15) K
tcondl	0.13	W/m×K	332.16	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.13	W/m×K	331.99	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons

tcondl	0.13	W/m×K	332.28	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.13	W/m×K	313.60	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.13	W/m×K	313.44	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.14	W/m×K	296.66	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.14	W/m×K	296.53	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	

toondl	0.42	\\//m\/	242.72	Thermol
tcondl	0.13	W/m×K	313.73	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.14	W/m×K	277.16	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.14	W/m×K	277.04	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.14	W/m×K	276.88	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.14	W/m×K	258.95	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons

tcondl	0.14	W/m×K	258.83	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.14	W/m×K	258.66	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.14	W/m×K	296.36	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	

Correlations

Information Value

Property code	pvap		
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$		
Coeff. A	8.58665e+01		
Coeff. B	-8.51220e+03		
Coeff. C	-1.03429e+01		
Coeff. D	5.70952e-06		
Temperature range (K), min.	228.46		
Temperature range (K), max.	637.38		

Sources

p-xylene, or mesitylene) binary

mixtures between T = (288.15 to 303.15)

Solubility of 2-Ethylanthraquinone in https://www.doi.org/10.1021/acs.jced.6b00334 Binary Mixtures of Oligooxymethylene Date: Invite: Binary Mixtures of Oligooxymethylene Date: Invite: Binary Mixtures of Oligooxymethylene Date: Invite: Binary Mixtures of Standard Form Mixtures and Mixtures of Trimethylene + Dimethyl https://www.doi.org/10.1021/je3010535 https://www.doi.org/10.1021/je060137q சோலைவின் Poblethyl Carbonate at http://pubs.acs.org/doi/abs/10.1021/ci990307l 298.15 K and 313.15 K:
Excess Molar Volumes and Surface
Tensions of 1,2,4-Trimethylbenzene
Excess Molar Volumes and Surface
Tensions of 1,2,4-Trimethylbenzene
Excess Molar Volumes and Surface
Excess Molar Volumes and Surface
Excess, Molar Mellymen and Surface
Excess Molar Volumes and Surface
Excess Molar Mellymen and Mellymen and Surface
Excess Molar Mellymen and Thermal Distribution of trimethylbenzene +
breight Management and Thermal Distribution of trimethylbenzene +
breight Management of the Surface
Excess Molar Mellymen and Thermal Distribution of trimethylbenzenes,
Excess Molar Mellymen and Surface
Tensions of Trimethylbenzene +
Excess Molar Volumes and Surface
Tensions of Trimethylbenzene +
Excess Molar Volumes and Surface
Tensions of Trimethylbenzene +
Excess Molar Volumes and Surface
Tensions of Trimethylbenzene +
Excess Molar Volumes and Surface
Tensions of Trimethylbenzene +
Excess Molar Volumes and Surface
Tensions of Trimethylbenzene +
Excess Molar Volumes and Surface
Tensions of Trimethylbenzene of
(No Mellymen and 298.15 K and 313.15 K: Excess Molar Volumes and Surface https://www.doi.org/10.1021/je800046k https://www.doi.org/10.1021/je049807n https://www.doi.org/10.1016/j.jct.2017.01.016 https://www.doi.org/10.1016/j.jct.2018.07.014 https://www.doi.org/10.1016/j.jct.2006.07.025 https://www.doi.org/10.1016/j.fluid.2017.09.011 https://www.doi.org/10.1021/je034162x https://www.doi.org/10.1016/j.jct.2005.10.022 https://www.doi.org/10.1021/acs.jced.7b01003 http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl file/ci034243xsi20040112 053635.txt https://www.doi.org/10.1021/je050484k https://www.doi.org/10.1016/j.jct.2004.11.023 https://www.doi.org/10.1021/je700414c https://www.doi.org/10.1016/j.jct.2012.10.023 https://www.doi.org/10.1016/j.fluid.2015.09.030 https://www.cheric.org/files/research/kdb/mol/mol664.mol https://www.doi.org/10.1016/j.fluid.2007.07.016 molecular interactions in binary

Fixers Molany Memora and Soutance,
Tensions of Trinethylpense activities

Activities and soutance activities

Tensions of Trinethylpense activities

Activities and soutance activities

Tensions of 18.25 Trimethylbenzene

Linuity Stativities and exadecane +

Tensions of Soutance and exadecane of the Control molecular interactions in binary N-acetylmorpholine + aromatic
Peristra Barre Mriationes from T =
Negrative 3 pages for: Binary Mixtures
Verial Marry Mixtures
Verial Mixtures
Verial Marry Liquid-liquid equilibria for ternary https://www.doi.org/10.1016/j.fluid.2016.01.005 Systems water + acetic acid +
Planswiff and Montager in Tropage ites of
Biogramma and Montage ites of
Biogramma and Biogra https://www.doi.org/10.1007/s10765-010-0768-y https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=664 https://www.doi.org/10.1016/j.fluid.2012.09.013 Experimentare and modeling with https://en.wikipedia.org/wiki/Joback_method CPA EoS: Viscosities, Densities, and Speeds of https://www.doi.org/10.1021/je060170c Sound of Binary Mixtures of Benzene, Formare, polygreal, mex grades to active at 12085195, and of Benzene, and https://www.doi.org/10.1016/j.jct.2006.02.001 293019e298.0150axide303.05)nk-xylene, or

NIST Webbook: http://webbook.nist.gov/cgi/cbook.cgi?ID=C108678&Units=SI

Excess and deviation properties for the https://www.doi.org/10.1016/j.jct.2005.12.005

https://www.doi.org/10.1021/je800579j

Excess and deviation properties for the binary mixtures of methylcyclohexane wantswieseneries from the binary mixtures of methylcyclohexane wantswieseneries from the second methylcyclohexane was at the second methylcyclohexane was in the second m

https://www.doi.org/10.1016/j.jct.2013.10.026

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=664

https://www.doi.org/10.1016/j.jct.2006.09.007

ary Diffusivities of Aniline, https://www.doi.org/10.1021/je7000254

Styrene, and Mesitylene in Supercritical Carbon Dioxide:

Legend

af: Acentric Factor Proton affinity affp: basg: Gas basicity

chl: Standard liquid enthalpy of combustion

Ideal gas heat capacity cpg: Liquid phase heat capacity cpl:

dm: **Dipole Moment** dvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formation

Heat of Combustion, Gross form hcg: hcn: Heat of Combustion, Net Form

hf: Enthalpy of formation at standard conditions hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions Enthalpy of vaporization at a given temperature hvapt:

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: McGowan's characteristic volume mcvol:

Critical Pressure pc: pvap: Vapor pressure rfi: Refractive Index rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

Molar entropy at standard conditions sg:

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

Surface Tension srf:

tb: Normal Boiling Point Temperature tc: Critical Temperature

tcondl: Liquid thermal conductivitytf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/67-639-9/Mesitylene.pdf

Generated by Cheméo on 2024-04-27 19:08:28.285355963 +0000 UTC m=+16534157.205933288.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.