1,4-Dioxane

Other names:

1,4-Diethylene dioxide 1,4-Diethyleneoxide 1,4-Dioxacyclohexane 1,4-Dioxan 1,4-Dioxin, tetrahydro-DIETHYLENE DIOXIDE DIETHYLENE ETHER Di(ethylene oxide) Diokan Dioksan Diossano-1,4 Dioxaan-1,4 Dioxan Dioxan-1,4 Dioxane Dioxane-1,4 Dioxanne Dioxyethylene ether Glycol ethylene ether Glycol ethylene ether 8 NCI-C03689 NE 220 NSC 8728 P-DIOXANE Rcra waste number U108 Tetrahydro-1,4-dioxin Tetrahydro-p-dioxin UN 1165 p-Dioxan p-Dioxin, tetrahydro-InChI=1S/C4H8O2/c1-2-6-4-3-5-1/h1-4H2 RYHBNJHYFVUHQT-UHFFFAOYSA-N C4H8O2 C1COCCO1 88.11 123-91-1

Inchi: InchiKey: Formula: SMILES: Mol. weight [g/mol]: CAS:

Physical Properties

Property code	Value Unit		Source
af	0.2810		KDB
affp	797.40	kJ/mol	NIST Webbook
aigt	453.15	К	KDB
basg	770.00	kJ/mol	NIST Webbook
chl	-2363.90 ± 0.50	kJ/mol	NIST Webbook
chl	-2346.20	kJ/mol	NIST Webbook
chl	-2362.23 ± 0.99	kJ/mol	NIST Webbook
chl	-2186.80	kJ/mol	NIST Webbook
dm	0.40	debye	KDB
dvisc	0.0011960	Paxs	Excess Molar Volumes and Viscosity Deviations of Binary Liquid Mixtures of 1,3-Dioxolane and 1,4-Dioxane with Butyl Acetate, Butyric Acid, Butylamine, and 2-Butanone at 298.15 K
fll	1.97	% in Air	KDB
flu	22.50	% in Air	KDB
fpc	296.48	К	KDB
fpo	285.37	К	KDB
gf	-180.90	kJ/mol	KDB
gyrad	3.1100		KDB
hf	-318.00 ± 2.00	kJ/mol	NIST Webbook
hf	-315.30 ± 0.80	kJ/mol	NIST Webbook
hf	-315.30	kJ/mol	KDB
hfl	-353.50 ± 0.80	kJ/mol	NIST Webbook
hfl	-355.13 ± 0.86	kJ/mol	NIST Webbook
hfus	12.84	kJ/mol	Joback Method
hvap	34.26	kJ/mol	Joback Method
ie	9.41	eV	NIST Webbook
ie	9.43	eV	NIST Webbook
ie	9.30 ± 0.10	eV	NIST Webbook
ie	9.19 ± 0.01	eV	NIST Webbook
ie	9.19 ± 0.01	eV	NIST Webbook
ie	9.13 ± 0.03	eV	NIST Webbook
ie	9.43	eV	NIST Webbook
ie	9.40	eV	NIST Webbook
log10ws	0.43		Crippen Method
logp	0.033		Crippen Method
mcvol	68.100	ml/mol	McGowan Method

рс	5471.55 ± 303.98	kPa	NIST Webbook
pc	5210.00	kPa	KDB
pc	5210.00 ± 68.94	kPa	NIST Webbook
pc	5000.00 ± 70.00	kPa	NIST Webbook
rhoc	360.35 ± 9.69	kg/m3	NIST Webbook
rinpol	690.00	5	NIST Webbook
rinpol	699.00		NIST Webbook
rinpol	687.00		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	697.00		NIST Webbook
rinpol	680.00		NIST Webbook
rinpol	694.00		NIST Webbook
rinpol	694.00		NIST Webbook
rinpol	705.00		NIST Webbook
rinpol	690.00		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	690.00		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	706.00		NIST Webbook
rinpol	692.00		NIST Webbook
rinpol	686.00		NIST Webbook
rinpol	702.00		NIST Webbook
rinpol	651.00		NIST Webbook
rinpol	693.00		NIST Webbook
rinpol	697.00		NIST Webbook
rinpol	692.00		NIST Webbook
rinpol	690.00		NIST Webbook
rinpol	687.00		NIST Webbook
rinpol	694.00		NIST Webbook
rinpol	680.00		NIST Webbook
rinpol	660.30		NIST Webbook
rinpol	702.00		NIST Webbook
rinpol	687.00		NIST Webbook
rinpol	648.00		NIST Webbook
rinpol	721.00		NIST Webbook
rinpol	698.00		NIST Webbook
rinpol	705.00		NIST Webbook
rinpol	643.00		NIST Webbook
rinpol	718.00		NIST Webbook
rinpol	731.30		NIST Webbook
rinpol	671.00		NIST Webbook
rinpol	669.70		NIST Webbook
rinpol	690.00		NIST Webbook

rinpol	670.10		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	690.00		NIST Webbook
rinpol	648.00		NIST Webbook
ripol	1083.00		NIST Webbook
ripol	1065.00		NIST Webbook
ripol	1066.00		NIST Webbook
ripol	1084.00		NIST Webbook
ripol	1065.00		NIST Webbook
ripol	1083.00		NIST Webbook
ripol	1093.00		NIST Webbook
ripol	1083.00		NIST Webbook
ripol	1097.00		NIST Webbook
ripol	1105.00		NIST Webbook
ripol	1085.00		NIST Webbook
ripol	1066.00		NIST Webbook
ripol	1065.00		NIST Webbook
ripol	1081.00		NIST Webbook
ripol	1100.00		NIST Webbook
ripol	1068.00		NIST Webbook
sg	299.91	J/mol×K	NIST Webbook
sl	196.60	J/mol×K	NIST Webbook
tb	374.47	К	Study of isobaric vapour liquid equilibrium of some cyclic ethers with 1-chloropropane: Experimental results and SAFT-VR modelling
tb	374.52	K	Vapor-Liquid Equilibrium and Volumetric Measurements for Binary Mixtures of 1,4-Dioxane with Isomeric Chlorobutanes
tb	374.60	К	KDB
tb	374.45	К	Measurement and correlation of binary vapor liquid equilibria of isomeric butanols with 1,4-dioxane
tc	588.00 ± 2.00	K	NIST Webbook
tc	585.15 ± 2.00	К	NIST Webbook
tc	588.15 ± 2.00	K	NIST Webbook
tc	587.00	K	KDB
tc	587.30 ± 1.00	K	NIST Webbook
tf	284.90	K	KDB

tf	284.48	К	Efficient determination of crystallisation and melting points at low cooling and heating rates with novel computer controlled equipment
tt	284.10 ± 0.20	К	NIST Webbook
VC	0.239 ± 0.008	m3/kmol	NIST Webbook
VC	0.239 ± 0.004	m3/kmol	NIST Webbook
VC	0.238	m3/kmol	KDB
ZC	0.2540620		KDB
zra	0.27		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	118.28	J/mol×K	369.04	Joback Method	
cpg	176.66	J/mol×K	578.47	Joback Method	
cpg	168.26	J/mol×K	543.56	Joback Method	
cpg	159.34	J/mol×K	508.66	Joback Method	
cpg	149.90	J/mol×K	473.75	Joback Method	
cpg	139.92	J/mol×K	438.85	Joback Method	
cpg	129.39	J/mol×K	403.94	Joback Method	
cpl	149.49	J/mol×K	298.15	NIST Webbook	
cpl	155.30	J/mol×K	313.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	153.70	J/mol×K	308.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	152.10	J/mol×K	303.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	

cpl	151.00	J/mol×K	298.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	150.00	J/mol×K	293.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	146.70	J/mol×K	288.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	158.40	J/mol×K	323.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	160.20	J/mol×K	328.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	160.40	J/mol×K	333.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	156.50	J/mol×K	318.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	

cpl	149.65	J/mol×K	298.15	NIST Webbook
cpl	150.57	J/mol×K	298.15	NIST Webbook
cpl	150.65	J/mol×K	298.15	NIST Webbook
cpl	150.77	J/mol×K	298.15	NIST Webbook
cpl	149.73	J/mol×K	298.15	NIST Webbook
cpl	149.00	J/mol×K	298.00	NIST Webbook
cpl	147.90	J/mol×K	298.15	NIST Webbook
cpl	149.00	J/mol×K	298.15	NIST Webbook
cpl	140.20	J/mol×K	298.00	NIST Webbook
cpl	155.60	J/mol×K	298.00	NIST Webbook
cpl	147.90	J/mol×K	298.00	NIST Webbook
cpl	152.97	J/mol×K	298.20	NIST Webbook
cpl	146.00	J/mol×K	291.00	NIST Webbook
cpl	154.80	J/mol×K	296.00	NIST Webbook
dvisc	0.0010295	Paxs	308.15	Viscosities and Densities of Binary Mixtures of 1,4-Dioxane, Carbon Tetrachloride, and Butanol at 303.15 K, 308.15 K, and 313.15 K
dvisc	0.0010870	Paxs	303.15 1-e	Viscosity of binary mixtures of thyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0011800	Paxs	298.15 1-e	Viscosity of binary mixtures of thyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0012023	Paxs	298.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K
dvisc	0.0008140	Paxs	323.15 1-e	Viscosity of binary mixtures of thyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents

dvisc	0.0007180	Paxs	333.15 Viscosity of
			binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0013111	Paxs	293.15 Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K
dvisc	0.0006400	Paxs	343.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0009340	Paxs	313.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0005770	Paxs	353.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0010985	Pa×s	303.15 Viscosities and Densities of Binary Mixtures of 1,4-Dioxane, Carbon Tetrachloride, and Butanol at 303.15 K, 308.15 K, and 313.15 K
dvisc	0.0010983	Paxs	303.15 Viscosities and Densities of Binary Mixtures of 1,4-Dioxane, Carbon Tetrachloride, and Butanol at 303.15 K, 308.15 K, and 313.15 K

dvisc	0.0009575	Paxs	313.15	Viscosities and Densities of Binary Mixtures of 1,4-Dioxane, Carbon Tetrachloride, and Butanol at 303.15 K, 308.15	
dvisc	0.0012236	Paxs	298.15	K, and 313.15 K Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K	
dvisc	0.0009268	Paxs	308.15	Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K	
dvisc	0.0007991	Paxs	318.15	Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K	
dvisc	0.0010219	Pa×s	308.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	
dvisc	0.0011780	Paxs	298.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques	

dvisc	0.0009985	Paxs	308.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques
dvisc	0.0008909	Paxs	318.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques
dvisc	0.0015900	Paxs	283.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K
dvisc	0.0013120	Paxs	293.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K
dvisc	0.0011020	Paxs	303.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K
dvisc	0.0014400	Paxs	288.15	Viscosity Behavior of Some Oxygen Containing Compounds

dvisc	0.0009460	Pa×s	313.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K	
dvisc	0.0008250	Pa×s	323.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K	
dvisc	0.0012860	Paxs	293.15	Viscosity of binary mixtures	
			1-6	of ethyl-3-methylimidazoli tetrafluoroborate ionic liquid with four organic solvents	um
dvisc	0.0007210	Pa×s	333.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K	
dvisc	0.0014381	Paxs	288.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	
dvisc	0.0010290	Paxs	308.15	Viscosity Behavior of Some Oxygen Containing Compounds	
dvisc	0.0011850	Paxs	298.15	Viscosity Behavior of Some Oxygen Containing Compounds	

dvisc	0.0011065	Paxs	303.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	
dvisc	0.0009477	Paxs	313.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	
dvisc	0.0006400	Paxs	343.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K	
econd	0.00	S/m	323.15	Micellar Properties and Related Thermodynamic Parameters of the 14-6-14, 2Br- Gemini Surfactant in Water + Organic Solvent Mixed Media	
econd	0.00	S/m	315.15	Micellar Properties and Related Thermodynamic Parameters of the 14-6-14, 2Br- Gemini Surfactant in Water + Organic Solvent Mixed Media	
econd	0.00	S/m	303.15	Micellar Properties and Related Thermodynamic Parameters of the 14-6-14, 2Br- Gemini Surfactant in Water + Organic Solvent Mixed Media	

econd	0.00	S/m	298.15	Micellar Properties and Related Thermodynamic Parameters of the 14-6-14, 2Br- Gemini Surfactant in Water + Organic Solvent Mixed Media	
hfust	12.84	kJ/mol	284.10	NIST Webbook	
hfust	11.88	kJ/mol	283.20	NIST Webbook	
hfust	2.35	kJ/mol	272.90	NIST Webbook	
hfust	12.84	kJ/mol	284.10	NIST Webbook	
hsubt	35.60	kJ/mol	254.50	NIST Webbook	
hvapt	35.80	kJ/mol	273.00	NIST Webbook	
hvapt	34.16	kJ/mol	374.50	NIST Webbook	
hvapt	36.50	kJ/mol	350.50	NIST Webbook	
hvapt	37.30	kJ/mol	345.50	NIST Webbook	
hvapt	37.00	kJ/mol	318.00	NIST Webbook	
hvapt	38.00	kJ/mol	330.00	NIST Webbook	
kvisc	0.000009	m2/s	313.15	Experimental and predicted viscosities of binary mixtures of cyclic ethers with 1-chloropentane or 1-chlorohexane at 283.15, 298.15, and 313.15K	
kvisc	0.0000011	m2/s	298.15	Experimental and predicted viscosities of binary mixtures of cyclic ethers with 1-chloropentane or 1-chlorohexane at 283.15, 298.15, and 313.15K	
рvар	3.60	kPa	292.45	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

рvар	4.50	kPa	296.56	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
рvар	2.38	kPa	285.11	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	19.54	kPa	328.15	Isothermal (vapour + liquid) equilibrium of (cyclic ethers + chlorohexane) mixtures: Experimental results and SAFT modelling	
рvар	4.90	kPa	298.15	Isothermal (vapour + liquid) equilibrium of (cyclic ethers + chlorohexane) mixtures: Experimental results and SAFT modelling	
pvap	19.54	kPa	328.15	Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane	
pvap	10.17	kPa	313.15	Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane	
pvap	4.90	kPa	298.15	Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane	

pvap	4.50	kPa	296.57	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	6.21	kPa	302.92	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	7.58	kPa	306.93	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	7.57	kPa	306.94	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
рvар	9.19	kPa	311.04	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

рvар	10.29	kPa	313.38	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	10.31	kPa	313.38	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
рvар	4.97	kPa	298.15	Vapor Pressures for 1,4-Dioxane + Tetrabutylammonium Nitrate, Water + Tetrabutylammonium Nitrate, and 1,4-Dioxane + Water + Tetrabutylammonium Nitrate
рvар	8.12	kPa	308.15	Vapor Pressures for 1,4-Dioxane + Tetrabutylammonium Nitrate, Water + Tetrabutylammonium Nitrate, and 1,4-Dioxane + Water + Tetrabutylammonium Nitrate
рvар	5.34	kPa	299.81	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols

рvар	2.92	kPa	288.66	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
рvар	2.70	kPa	288.15	Vapor Pressures for 1,4-Dioxane + Tetrabutylammonium Nitrate, Water + Tetrabutylammonium Nitrate, and 1,4-Dioxane + Water + Tetrabutylammonium Nitrate	
rfi	1.41810		298.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethylene, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K	
rfi	1.42030		298.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of 1,4-Dioxane with Different Organic Liquids at (298.15, 303.15, and 308.15) K	
rfi	1.42200		293.10	Liquid-Liquid Equilibrium for the System Water + 1,4-Dioxane + 2,6-Dimethyloct-7-en-2- over the Temperature Range of (343.2 to 358.2) K	ol

rfi	1.41170	318.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.41390	313.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.41610	308.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.41820	303.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	

rfi	1.42030	298.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K
rfi	1.42240	293.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K
rfi	1.42450	288.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K
rfi	1.41750	293.15	Solubilities of Phosphorus-Containing Compounds in Selected Solvents

rfi	1.41410	308.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K
rfi	1.41440	308.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethyl Acetoacetate, + Diethyl Oxalate, + Diethyl Phthalate, or + Dioctyl Phthalate at 298.15, 303.15, and 308.15 K
rfi	1.41700	303.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethyl Acetoacetate, + Diethyl Oxalate, + Diethyl Phthalate, or + Dioctyl Phthalate at 298.15, 303.15, and 308.15 K
rfi	1.41760	303.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethylene, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K

rfi	1.42020	298.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethyl Acetoacetate, + Diethyl Oxalate, + Diethyl Phthalate, or + Dioctyl Phthalate at 298.15, 303.15, and 308.15 K	
rfi	1.42010	298.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethyl Acetoacetate, + Diethyl Oxalate, + Diethyl Phthalate, or + Dioctyl Phthalate at 298.15, 303.15, and 308.15 K	
rfi	1.41430	308.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethanediol, + Hexane, + Tributylamine, or + Triethylamine at (298.15, 303.15, and 308.15) K	
rfi	1.41700	303.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethanediol, + Hexane, + Tributylamine, or + Triethylamine at (298.15, 303.15, and 308.15) K	

rfi	1.42010	298.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethanediol, + Hexane, + Tributylamine, or + Triethylamine at (298.15, 303.15, and 308.15) K	
rfi	1.42030	298.15	Bubble Temperature Measurements on Binary Mixtures Formed by Cyclohexane at 94.7 kPa	
rfi	1.40840	318.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	
rfi	1.40920	318.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	
rfi	1.41430	308.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	

rfi	1.41440	308.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	
rfi	1.42000	298.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	
rfi	1.41264	313.15	Volumetric and refractive properties of binary mixtures containing 1,4-dioxane and chloroalkanes	
rfi	1.41995	298.15	Volumetric and refractive properties of binary mixtures containing 1,4-dioxane and chloroalkanes	
rfi	1.41810	303.15	Thermodynamic Properties of Water + Tetrahydrofuran and Water + 1,4-Dioxane Mixtures at (303.15, 313.15, and 323.15) K	
rfi	1.42200	293.10 wate	Liquid liquid phase equilibria of the ternary system of er/1,4-dioxane/dihydron	nyrcene

rfi	1.41450		308.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of 1,4-Dioxane with Different Organic Liquids at (298.15, 303.15, and 308.15) K	
rfi	1.41640		303.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of 1,4-Dioxane with Different Organic Liquids at (298.15, 303.15, and 308.15) K	
rhol	1005.12	kg/m3	318.15 1-c	Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3- methylimidazlouim tetraflouroborate and potyl-3-methylimidazlou tetraflouroborate with cyclic ethers	uim
rhol	1022.30	kg/m3	303.15	Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. Haloalkanes and other polar solvents	
rhol	1033.59	kg/m3	293.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones	

rhol	1027.94	kg/m3	298.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones	
rhol	1022.28	kg/m3	303.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones	
rhol	1016.59	kg/m3	308.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones	
rhol	1027.87	kg/m3	298.15	Isothermal Vapor-Liquid Equilibria and Excess Gibbs Energies for Binary Mixtures of Cyclic Ethers with 1,2-Dichloroethane	
rhol	1039.12	kg/m3	288.15 F	Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine-Flory-Patterson Modeling	

rhol	1027.84	kg/m3	298.15 P	Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and rigogine-Flory-Patterson Modeling	
rhol	1016.57	kg/m3	308.15 P	Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and rigogine-Flory-Patterson Modeling	
rhol	1010.83	kg/m3	313.15	Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3- methylimidazlouim tetraflouroborate and pottyl-3-methylimidazlouim tetraflouroborate with cyclic ethers	
rhol	1027.99	kg/m3	298.15	Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure	

rhol	1022.33	kg/m3	303.15	Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure	
rhol	1016.66	kg/m3	308.15	Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure	
rhol	1010.98	kg/m3	313.15	Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure	
rhol	1005.28	kg/m3	318.15	Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure	
rhol	999.58	kg/m3	323.15	Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure	

rhol	1016.52	kg/m3	308.15 Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3- methylimidazlouim tetraflouroborate and 1-octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers
rhol	1022.70	kg/m3	303.15 Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and Butyl Vinyl Ether
rhol	1017.40	kg/m3	308.15 Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and Butyl Vinyl Ether
rhol	1011.10	kg/m3	313.15 Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and Butyl Vinyl Ether
rhol	1033.57	kg/m3	293.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
rhol	1027.92	kg/m3	298.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol

rhol	1022.27	kg/m3	303.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
rhol	1010.91	kg/m3	313.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
rhol	999.49	kg/m3	323.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
rhol	987.97	kg/m3	333.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
rhol	976.37	kg/m3	343.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
rhol	964.63	kg/m3	353.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
rhol	1027.90	kg/m3	298.15 Densities, Speeds of Sound, Excess Molar Enthalpies, and Heat Capacities of o-Chlorotoluene and Cyclic Ether Mixtures

rhol	1022.30	kg/m3	303.15	Densities, Speeds of Sound, Excess Molar Enthalpies, and Heat Capacities of o-Chlorotoluene and Cyclic Ether Mixtures
rhol	1016.60	kg/m3	308.15	Densities, Speeds of Sound, Excess Molar Enthalpies, and Heat Capacities of o-Chlorotoluene and Cyclic Ether Mixtures
rhol	1027.82	kg/m3	298.15	Surface Tension and Surface Properties of Binary Mixtures of 1,4-Dioxane or N,N-Dimethyl Formamide with n-Alkyl Acetates
rhol	1022.19	kg/m3	303.15	Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3- methylimidazlouim tetraflouroborate and potyl-3-methylimidazlouim tetraflouroborate with cyclic ethers
rhol	1027.85	kg/m3	298.15 1-c	Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-HexyI-3- methylimidazlouim tetraflouroborate and pottyI-3-methylimidazlouim tetraflouroborate with cyclic ethers

rhol	1033.50	kg/m3	293.15 1-c	Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-HexyI-3- methylimidazlouim tetraflouroborate and octyI-3-methylimidazlouim tetraflouroborate with cyclic ethers
rhol	1021.84	kg/m3	303.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory
rhol	1027.51	kg/m3	298.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory
rhol	1033.16	kg/m3	293.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory
rhol	1038.78	kg/m3	288.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory
rhol	1027.87	kg/m3	298.15	Surface study of mixtures containing cyclic ethers and isomeric chlorobutanes

rhol 1033.80 kg/m3 293.15 Volumetric properties of binary mixtures of (wator + organic solvents) at temperatures between T = 303.15 K at p = 0.1 MPa rhol 1027.88 kg/m3 298.15 (Vapour + liquid) equilibrium of binary mixtures of (wator + 0.1 MPa) rhol 1027.88 kg/m3 208.15 (Vapour + liquid) equilibrium of binary mixtures of (14-dioxane + 2-methyl-2-propanol) at isobatic conditions rhol 1022.40 kg/m3 303.15 Urraveling various types of non-covalent interactions of berzyl amine with ethers in mitereations in the berzyl amine with ethers in the some 1,2- disubstituted ethanes at T = (288.15, 080.15) and 318.15] K tay ultrasonic and DFT methods rhol 1016.78 kg/m3 308.15 Hydrogen bond interactions in the blends of 1,4-dioxane with some 1,2- disubstituted ethanes at T = (288.15, 080.15) and 318.15] K rhol 1027.79 kg/m3 308.15 Hydrogen bond interactions in the blends of 1,4-dioxane with some 1,2- disubstituted ethanes at T = (286.15, 308.15] and 318.15] K rhol 1027.79 kg/m3 298.15 Experimental and predicted vapour liquid equilibrium of 1,4-dioxane with some 1,2- disubstituted ethanes at T = (286.15, 308.15] K						
rhol 1022.40 kg/m3 303.15 Unraveling or	rhol	1033.80	kg/m3	293.15	properties of binary mixtures of (water + organic solvents) at temperatures between T = 288.15 K and T = 303.15 K at p =	
rhol 1005.24 kg/m3 318.15 Hydrogen bond interactions in the blends of 1.4-dioxane with some 1.2- disubstituted ethanes at T = (298.15, 308.15 and 318.15) K rhol 1016.78 kg/m3 308.15 Hydrogen bond interactions in the blends of 1.4-dioxane with some 1, 2- disubstituted ethanes at T = (298.15, 308.15 and 318.15) K rhol 1016.78 kg/m3 308.15 Hydrogen bond interactions in the blends of 1.4-dioxane with some 1, 2- disubstituted ethanes at T = (298.15, 308.15 and 318.15) K rhol 1027.79 kg/m3 298.15 Hydrogen bond interactions in the blends of 1.4-dioxane with some 1, 2- disubstituted ethanes at T = (298.15, 308.15 and 318.15) K rhol 1027.79 kg/m3 298.15 Hydrogen bond interactions in the blends of 1.4-dioxane with some 1, 2- disubstituted ethanes at T = (298.15, 308.15 and 318.15) K rhol 1027.85 kg/m3 298.15 Experimental and predicted vapour inquid equilibrium of 1.4-dioxane with cycloalkanes	rhol	1027.88	kg/m3	298.15	equilibrium of binary mixtures (1,3-dioxolane or 1,4-dioxane + 2-methyl-1-propanol or 2-methyl-2-propanol) at isobaric	
intéractions in the blends of 1,4-dioxane with some 1, 2- disubstituted ethanes at T = (298.15, 308.15 and 318.15) K rhol 1016.78 kg/m3 308.15 Hydrogen bond interactions in the blends of 1,4-dioxane with some 1, 2- disubstituted ethanes at T = (298.15, 308.15 and 318.15) K rhol 1016.78 kg/m3 298.15 Hydrogen bond interactions in the blends of 1,4-dioxane with some 1, 2- disubstituted ethanes at T = (298.15, 308.15 and 318.15) K rhol 1027.79 kg/m3 298.15 Hydrogen bond interactions in the blends of 1,4-dioxane with some 1, 2- disubstituted ethanes at T = (298.15, 308.15 and 318.15) K rhol 1027.79 kg/m3 298.15 Experimental and predicted vapour liquid equilibrium of 1,4-dioxane with cycloalkanes	rhol	1022.40	kg/m3	303.15	various types of non-covalent interactions of benzyl amine with ethers in n-hexane at 303.15 K by ultrasonic and	
rhol 1027.79 kg/m3 298.15 Hydrogen bond interactions in the blends of 1,4-dioxane with some 1, 2- disubstituted ethanes at T = (298.15, 308.15 and 318.15) K rhol 1027.79 kg/m3 298.15 Hydrogen bond interactions in the blends of 1,4-dioxane with some 1, 2- disubstituted ethanes at T = (298.15, 308.15 and 318.15) K rhol 1027.85 kg/m3 298.15 Experimental and predicted vapour liquid equilibrium of 1,4-dioxane with cycloalkanes	rhol	1005.24	kg/m3	318.15	interactions in the blends of 1,4-dioxane with some 1, 2- disubstituted ethanes at T = (298.15, 308.15	
rhol 1027.85 kg/m3 298.15 Experimental and predicted vapour liquid equilibrium of 1,4-dioxane with some 1, 2-	rhol	1016.78	kg/m3	308.15	interactions in the blends of 1,4-dioxane with some 1, 2- disubstituted ethanes at T = (298.15, 308.15	
predicted vapour liquid equilibrium of 1,4-dioxane with cycloalkanes	rhol	1027.79	kg/m3	298.15	interactions in the blends of 1,4-dioxane with some 1, 2- disubstituted ethanes at T = (298.15, 308.15	
	rhol	1027.85	kg/m3	298.15	predicted vapour liquid equilibrium of 1,4-dioxane with cycloalkanes	

rhol	1033.00	kg/m3	293.00	KDB
rhol	1028.20	kg/m3	298.15	Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and Butyl Vinyl Ether
rhol	1027.90	kg/m3	298.15	Vapour liquid equilibrium of cyclic ethers with 1-chlorohexane: Experimental results and UNIFAC predictions
rhol	1005.29	kg/m3	318.15	Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine-Flory-Patterson Modeling
rhol	999.40	kg/m3	323.15	Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-HexyI-3- methylimidazlouim tetraflouroborate and I-octyI-3-methylimidazlouim tetraflouroborate with cyclic ethers
sdco	0.00	m2/s	338.12	Viscous Calibration Liquids for Self-diffusion Measurements
sdco	0.00	m2/s	288.31	Viscous Calibration Liquids for Self-diffusion Measurements

	sdco	0.00	m2/s	288.33	Viscous Calibration Liquids for Self-diffusion Measurements	
:	sdco	0.00	m2/s	293.11	Viscous Calibration Liquids for Self-diffusion Measurements	
	sdco	0.00	m2/s	298.13	Viscous Calibration Liquids for Self-diffusion Measurements	
	sdco	0.00	m2/s	298.17	Viscous Calibration Liquids for Self-diffusion Measurements	
:	sdco	0.00	m2/s	298.18	Viscous Calibration Liquids for Self-diffusion Measurements	
	sdco	0.00	m2/s	298.20	Viscous Calibration Liquids for Self-diffusion Measurements	
	sdco	0.00	m2/s	303.12	Viscous Calibration Liquids for Self-diffusion Measurements	
	sdco	0.00	m2/s	307.92	Viscous Calibration Liquids for Self-diffusion Measurements	
:	sdco	0.00	m2/s	308.06	Viscous Calibration Liquids for Self-diffusion Measurements	
5	sdco	0.00	m2/s	317.85	Viscous Calibration Liquids for Self-diffusion Measurements	
	sdco	0.00	m2/s	318.24	Viscous Calibration Liquids for Self-diffusion Measurements	
	sdco	0.00	m2/s	338.09	Viscous Calibration Liquids for Self-diffusion Measurements	

sdco 0.00 m2/s 338.13 Viscous Calibration Liquids for Self-diffusion Measurements sdco 0.00 m2/s 347.87 Viscous Calibration Liquids for Self-diffusion Measurements sdco 0.00 m2/s 347.97 Viscous Calibration Liquids for Self-diffusion Measurements sdco 0.00 m2/s 327.95 Viscous Calibration Liquids for Self-diffusion Measurements sdco 0.00 m2/s 325.95 Viscous Calibration Liquids for Self-diffusion Measurements sdco 0.00 m2/s 358.25 Viscous Calibration Liquids for Self-diffusion Measurements sdco 0.00 m2/s 358.49 Viscous Calibration Liquids for Self-diffusion Measurements sdco 0.00 m2/s 327.94 Viscous Calibration Liquids for Self-diffusion Measurements stust 45.19 J/molxK 272.90 NIST Webbook sfust 8.79 J/molxK 272.90 NIST Webbook speedsl 1346.30 m/s 298.15 Compressibilities for Binary Solvents at T) speedsl 1278.80 m/s 313.15 Speed of Sound and Lentropic Compressibilities for Binary Nixtures of a Cyclic Diether w						
Sdco 0.00 m2/s 347.97 Viscous Calibration Liquids for Self-diffusion sdco 0.00 m2/s 327.95 Viscous Calibration Liquids for Self-diffusion sdco 0.00 m2/s 327.95 Viscous Calibration Liquids for Self-diffusion sdco 0.00 m2/s 358.25 Viscous Calibration Liquids for Self-diffusion Measurements sdco 0.00 m2/s 358.49 Viscous Calibration Liquids for Self-diffusion Measurements sdco 0.00 m2/s 358.49 Viscous Calibration Liquids for Self-diffusion Measurements sdco 0.00 m2/s 327.94 Viscous Calibration Liquids for Self-diffusion Measurements sdco 0.00 m2/s 327.94 Viscous Calibration Liquids for Self-diffusion Measurements sfust 45.19 J/molxK 281.0 NIST Webbook sfust 8.79 J/molxK 27.94 Compressibility Studies of binary Solutions speedsl 1346.30 m/s 298.15 Compressibility Studies of binary Solutions speedsl 1278.80 m/s 313.15 Speeds of Sound and Isentropic Compressibilities for Binary Witxures of a Cyclic Diether with a Cyclic Compound at Three	sdco	0.00	m2/s	338.13	Calibration Liquids for Self-diffusion	
Sdco0.00m2/s327.95Calibration Self-offusion Measurementssdco0.00m2/s327.95Viscous Calibration Liquids for Self-offusion Measurementssdco0.00m2/s358.25Viscous Calibration Liquids for Self-offusion Measurementssdco0.00m2/s358.49Viscous Calibration Liquids for Self-offusion Measurementssdco0.00m2/s358.49Viscous Calibration Liquids for Self-offusion Measurementssdco0.00m2/s327.94Viscous Calibration Liquids for Self-offusion Measurementssdco0.00m2/s327.94Viscous Calibration Liquids for Self-offusion Measurementssdco0.00m2/s327.94Viscous Calibration Liquids for Self-offusion Measurementssdco0.00m2/s327.94Viscous Calibration Liquids for Self-offusion Measurementssduco0.00m2/s327.94Viscous Calibration Liquids for Self-offusion Measurementsstust45.19J/molxK284.10NIST Webbooksfust41.90J/molxK283.20NIST Webbookspeedsl1346.30m/s298.15Compressibility Studies of Binary Solutions Involving Water as a Solution s Nonaqueous Solvens at T) 288.15 Kspeedsl1278.80m/s313.15Speed sol Sound and legentopic Compressibilities for Binary Mixtures of a Cyclic Compressibilities Three <td>sdco</td> <td>0.00</td> <td>m2/s</td> <td>347.87</td> <td>Calibration Liquids for Self-diffusion</td> <td></td>	sdco	0.00	m2/s	347.87	Calibration Liquids for Self-diffusion	
Sdco 0.00 m2/s 358.25 Viscous Calibration Liquids for Self-diffusion Measurements Sdco 0.00 m2/s 358.49 Viscous Calibration Liquids for Self-diffusion Measurements Sdco 0.00 m2/s 358.49 Viscous Calibration Liquids for Self-diffusion Measurements Sdco 0.00 m2/s 327.94 Viscous Calibration Liquids for Self-diffusion Measurements sdco 0.00 m2/s 327.94 Viscous Calibration Liquids for Self-diffusion Measurements sfust 45.19 J/molxK 284.10 NIST Webbook sfust 8.79 J/molxK 272.90 NIST Webbook sfust 41.90 J/molxK 283.20 NIST Webbook sfust 41.90 J/molxK 283.15 Compressibility Studies of Binary Solutions Involving Water as a Solute in Nonaqueous Solvents at T) speedsl 1278.80 m/s 313.15 Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compund at Three	sdco	0.00	m2/s	347.97	Calibration Liquids for Self-diffusion	
Sdco 0.00 m2/s 358.49 Viscous Calibration Liquids for Self-diffusion Measurements Sdco 0.00 m2/s 327.94 Viscous Calibration Liquids for Self-diffusion Measurements Sdco 0.00 m2/s 327.94 Viscous Calibration Liquids for Self-diffusion Measurements sfust 45.19 J/molxK 284.10 NIST Webbook sfust 8.79 J/molxK 272.90 NIST Webbook sfust 41.90 J/molxK 283.20 NIST Webbook speedsl 1346.30 m/s 298.15 Compressibility Solutions Involving Water as a Solute in Nonaqueous Solvents at T) 298.15 K speedsl 1278.80 m/s 313.15 Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three	sdco	0.00	m2/s	327.95	Calibration Liquids for Self-diffusion	
Sdco0.00m2/s327.94Viscous Calibration Liquids for Self-diffusion Measurementssdco0.00m2/s327.94Viscous Calibration Liquids for Self-diffusion Measurementssfust45.19J/molxK284.10NIST Webbooksfust8.79J/molxK272.90NIST Webbooksfust41.90J/molxK283.20NIST Webbookspeedsl1346.30m/s298.15Compressibility Studies of Binary Solutions Involving Water as a Solute in Nonaqueous Solvents at T) 298.15 Kspeedsl1278.80m/s313.15Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three	sdco	0.00	m2/s	358.25	Calibration Liquids for Self-diffusion	
Sfust45.19J/molxK284.10NIST Webbooksfust8.79J/molxK272.90NIST Webbooksfust41.90J/molxK283.20NIST Webbookspeedsl1346.30m/s298.15Compressibility Studies of Binary Solutions Involving Water as a Solute in Nonaqueous Solvents at T) 298.15 Kspeedsl1278.80m/s313.15Speeds of Sound and Isentropic Compressibilities for Binary Solutions Involving Water as a Solute in Nonaqueous Solvents at T) 298.15 K	sdco	0.00	m2/s	358.49	Calibration Liquids for Self-diffusion	
sfust8.79J/molxK272.90NIST Webbooksfust41.90J/molxK283.20NIST Webbookspeedsl1346.30m/s298.15Compressibility Studies of Binary Solutions Involving Water as a Solute in Nonaqueous Solvents at T) 298.15 Kspeedsl1278.80m/s313.15Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three	sdco	0.00	m2/s	327.94	Calibration Liquids for Self-diffusion	
sfust41.90J/molxK283.20NIST Webbookspeedsl1346.30m/s298.15Compressibility Studies of Binary Solutions Involving Water as a Solute in Nonaqueous Solvents at T) 298.15 Kspeedsl1278.80m/s313.15Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three	sfust	45.19	J/mol×K	284.10	NIST Webbook	
speedsl1346.30m/s298.15Compressibility Studies of Binary Solutions Involving Water as a Solute in Nonaqueous Solvents at T) 298.15 Kspeedsl1278.80m/s313.15Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three	sfust	8.79	J/mol×K	272.90	NIST Webbook	
Studies of Binary Solutions Involving Water as a Solute in Nonaqueous Solvents at T) 298.15 K speedsl 1278.80 m/s 313.15 Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three	sfust	41.90	J/mol×K	283.20	NIST Webbook	
and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three	speedsl	1346.30	m/s	298.15	Studies of Binary Solutions Involving Water as a Solute in Nonaqueous Solvents at T)	
	speedsl	1278.80	m/s	313.15	and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three	

speedsl	1344.80	m/s	298.15	Densities and speeds of sound for binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-1-propanol or 2-methyl-2-propanol) at the temperatures 298.15 K and 313.15 K
speedsl	1279.80	m/s	313.15	Densities and speeds of sound for binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-1-propanol or 2-methyl-2-propanol) at the temperatures 298.15 K and 313.15 K
speedsl	1343.60	m/s	298.15	Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures
speedsl	1301.20	m/s	308.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods
speedsl	1367.20	m/s	293.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods

speedsl	1279.70	m/s	313.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1258.60	m/s	318.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1409.60	m/s	283.15	Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures	
speedsl	1357.70	m/s	295.15	Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and 313.15) K	
speedsl	1344.80	m/s	298.15	Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and 313.15) K	

speedsl1331.90m/s301.15Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + 1301.15, Rdspeedsl1319.00m/s304.15Density, Speed of Sound, and Sound, and Masurements for the Binary Mixture (1, 4-Dioxane + 1301.15, Rdspeedsl1316.20m/s304.15Density, Speed of Sound, and Masurements Masurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (285.15, and 313.15, Rdspeedsl1306.20m/s307.15Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (285.15, and 313.15, Rdspeedsl1306.20m/s307.15Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Horane + Hora						
speedsl 1293.30 m/s 310.15 Density. Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 208.15, 307.15, 310.15, and 313.15) K speedsl 1306.20 m/s 307.15 Density. Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 304.15, 307.	speedsl	1331.90	m/s	301.15	of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and	
speedsl 1280.40 m/s 313.15 K speedsl 1280.40	speedsl	1319.00	m/s	304.15	of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and	
of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and 313.15) K speedsl 1280.40 m/s 313.15 Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 307.15, 310.15, and	speedsl	1306.20	m/s	307.15	of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and	
of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and	speedsl	1293.30	m/s	310.15	of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and	
	speedsl	1280.40	m/s	313.15	of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and	

speedsl	1344.70	m/s	298.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1323.10	m/s	303.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
srf	0.03	N/m	313.15	Thermophysical study of 1,4-dioxane with cycloalkane mixtures	
srf	0.03	N/m	298.15	Thermophysical study of 1,4-dioxane with cycloalkane mixtures	
srf	0.04	N/m	283.15	Thermophysical study of 1,4-dioxane with cycloalkane mixtures	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tfp	285.08	К	101.30 N-m	(Solid + liquid) phase equilibria of binary mixtures containing nethyl-2-pyrrolidinon and ethers at atmospheric pressure

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.48111e+01
Coeff. B	-3.42606e+03
Coeff. C	-3.81740e+01
Temperature range (K), min.	274.07
Temperature range (K), max.	398.83
Information	Value

value
pvap
$ln(Pvp) = A + B/T + C^*ln(T) + D^*T^2$
7.69176e+01
-7.07594e+03
-9.15152e+00
5.90158e-06
275.00
587.00

Datasets

Viscosity, Pa*s

Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid
303.15	101.33	0.0010750
Reference		https://www.doi.org/10.1016/j.tca.2009.07.008
Temperature, K	Pressure, kPa	Viscosity, Pa*s
303.15	101.30	0.0010224
Reference		https://www.doi.org/10.1021/je034204h

Mass density, kg/m3

Pressure, kPa - Liquid

85.90

Temperature, K - Liquid

Mass density, kg/m3 - Liquid

Reference

298.15

1027.93

https://www.doi.org/10.1016/j.fluid.2013.05.001

Sources

Temperature dependence of limiting Canarian of the theorem in the same menes and Souther of the theorem in the same menes and Souther of the same menes and Souther of the sense of the sense and the repetitive sense of the sense and the separation based on activity of separation based on activity inter-or separation based on activity of separation based on activity inter-or separation based on activity of separation based on activity inter-separation activity separation based on activity of separation and Model Correlation of

Gorieranow, and Solvenie Effect Parageneration and Model Correlation of Gold Biographic Solvents and Solvents organic solvents from T = (288.15 to 323.15) K: Determination and modelling:

https://www.doi.org/10.1016/j.fluid.2007.08.013 **Temperature dependence of limiting** activity coefficients and Henry s law **Solution of the second s** and physicochemical properties for Wessillesson and overlation of the for Southility of 2-Cyanoacetamide in 14 Protest ways to the formulation of Attribution of the second states of the second stat https://www.doi.org/10.1016/j.jct.2016.01.017 https://www.doi.org/10.1016/j.jct.2016.06.028 https://www.doi.org/10.1016/j.jct.2013.10.010 https://www.doi.org/10.1016/j.fluid.2009.03.017 https://www.doi.org/10.1021/je700560s https://www.doi.org/10.1021/je030107c https://www.doi.org/10.1016/j.fluid.2009.01.010 https://www.doi.org/10.1021/acs.jced.9b00243 https://www.doi.org/10.1021/acs.jced.8b01181 https://www.doi.org/10.1021/acs.jced.9b00294 https://www.doi.org/10.1021/je049852v https://www.doi.org/10.1016/j.jct.2016.01.003

Partition Coefficients of Organic Compounds in New Imidazolium and

ethylbenzene/styrene based on gamma Mrasur magnis gsaftimity coefficients at infinite dilution for organic solutes Marsurementiantymedrelling of At minime undition for organic solutes Marswire nantian briede (ing of constrained by the studen of each of the studen of the stud that incomposition as partic aspartic approximation of https://www.doi.org/10.1021/je020185k Adjoint aqueo traited working ixtures of Montemental 2 Magain and the provided working in the Minima with the second and the provided and the Schlein and States and States and the second and the New Solvents and Binary Mixtures Solvents and Binary Mixtures Correlation of Pymetrozine and Correlation of the Effect of Solvent Evaluation of the Effect of Solvent **Properties and Composition:**

https://www.doi.org/10.1021/je9003178 rartition Coerricients of Organic Compounds in New Imidazolium and Fightack Jiawi enuilibrit asseed to the system Water, Lusiciova esecusio hexanol on on several operators of Mixtures Paragram for Ternary Intermytry and on the operators of Mixtures Paragram for Ternary Intermytry and on the operators of Mixtures Paragram for Ternary Intermytry and on the operators of Mixtures Paragram for Ternary Intermytry and on the operators of Mixtures Paragram for Ternary Intermytry and on the operators of Mixtures Paragram for Ternary Intermytry and on the operators of Mixtures Paragram for Ternary Intermytry and on the operators of Mixtures Paragram for Ternary Intermytry and on the operators of Mixtures Paragram for Ternary Intermytry and the operators of Mixtures Paragram for Ternary Intermytry and the operators of Mixtures Paragram for Ternary Intermytry and the operators of Mixtures Paragram for Ternary Intermytry and the operators of Mixtures Paragram for Ternary Intermytry and the operators of Mixtures Paragram for Ternary Intermytry and the operators of Mixtures Paragram for Ternary Intermytry and the operators of Mixtures Paragram for the operators of Mixtures Paragram fo The name of the second https://www.doi.org/10.1016/j.jct.2015.05.022 https://www.doi.org/10.1021/acs.jced.9b00844 https://www.doi.org/10.1021/acs.jced.7b01091 https://www.doi.org/10.1021/acs.jced.9b00693 https://www.doi.org/10.1016/j.jct.2017.11.017 http://webbook.nist.gov/cgi/cbook.cgi?ID=C123911&Units=SI https://www.doi.org/10.1016/j.jct.2012.03.005 https://www.doi.org/10.1016/j.jct.2016.07.043 https://www.doi.org/10.1016/j.jct.2016.10.020 https://www.doi.org/10.1016/j.jct.2005.07.012 https://www.doi.org/10.1016/j.jct.2018.07.024 https://www.doi.org/10.1016/j.jct.2017.05.004 https://www.doi.org/10.1016/j.fluid.2018.09.024 https://www.doi.org/10.1021/acs.jced.6b00576 https://www.doi.org/10.1016/j.tca.2006.05.010 https://www.doi.org/10.1021/je049610v https://www.doi.org/10.1021/je049610v https://www.doi.org/10.1016/j.jct.2011.04.018 https://www.doi.org/10.1016/j.jct.2011.04.018 https://www.doi.org/10.1016/j.jct.2018.01.003 https://www.doi.org/10.1016/j.jct.2018.01.003 https://www.doi.org/10.1016/j.jct.2018.01.003 https://www.doi.org/10.1016/j.jct.2018.01.003 https://www.doi.org/10.1016/j.jct.2018.01.003 https://www.doi.org/10.1016/j.jct.2018.01.003 https://www.doi.org/10.1021/acs.jced.8b01101 https://www.doi.org/10.1021/acs.jced.9b00385 https://www.doi.org/10.1016/j.jct.2019.06.025 https://www.doi.org/10.1021/acs.jced.8b01101 https://www.doi.org/10.1021/acs.jced.9b00385 https://www.doi.org/10.1016/j.jct.2016.10.006 https://www.doi.org/10.1021/acs.jced.9b00320 https://www.doi.org/10.1021/je800475d https://www.doi.org/10.1021/acs.jced.9b00229

Experimental Measurements and Correlations of Excess Molar

 Enthaliste of drine grantly Antivernary
 https://www.doi.org/10.1021/je900370q

 Mage series of the series 283.15, 298.15, and 313.15K: Solubility of Acetoguanamine in Twelve https://www.doi.org/10.1021/acs.jced.9b00593 Neat Solvents from 283.15 to 323.15 K: Solubility and preferential solvation of https://www.doi.org/10.1016/j.jct.2019.04.001 flubendazole dissolved in aqueous Ko Bollanar miras rescolata: dioxane, dimethyl sulfoxide, Wige an Effort of the and Belated Derraggy pamic Parameters of the adjust 12 Br- coloring iso inageling Hs The product of the pr **Non-operative of the intervent winxtures of the intervent of the interven** trifluorotris(perfluoroethyl)phosphate:

https://www.doi.org/10.1021/je9010097 https://www.doi.org/10.1021/je900370q **is a series of the series of** https://www.cheric.org/files/research/kdb/mol/mol1047.mol https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1047 https://www.doi.org/10.1021/je900894x https://www.doi.org/10.1016/j.jct.2019.07.001 https://www.doi.org/10.1016/j.fluid.2018.07.028

Measurement and correlation of binary https://www.doi.org/10.1016/j.fluid.2007.11.002 vapor liquid equilibria of isomeric F,4-DIBKANG KANKUNGY AS 030375,043.15 and profession of SAUGHERING AND HEILE SOlvent SAUGHERING AND HEILE SOlvent SAUGHERING AND HEILE SOlvent NUMBER SOLVER AND HEILE SOLVENT WING AND AND THE SOLVENT OF SOLUDINITY and preferential Solvation of MALENANDU HTEM The actodate tamide, N.N-Dimethylformamide, Dimethyl Schexitter and Ensite the prosent of Correlations of Excess Molar Enthalight Determining yound Ternary Mnames with an ensite the provide the Enthalight Determining yound Ternary Mnames with an ensite the provide the Enthalight Determining yound the provide the provide the provide the Enthalight Determining yound the provide the provide the provide the provide the Enthalight Determining yound the provide the prov Mine organize solvents now PCX (208)15 Costaining K GROMPHICK (2000) Declaration of the solution of the soluti and Greedin for Several of Binary cetate) Activities and Apple and the several of by gas-liquid chromatography: Solubility measurements and

1,3,5-Trifluoro-2,4,6-triiodobenzene in Different Solvents from 289.25 to 332.15 K:

https://www.doi.org/10.1021/je500171d Maanuremant vj4Saniak Linguid Phase Equilibrium for the Ternary Mana visuation for the Ternary Microsoft Soberns Activity of the antipost of the ternary Microsoft Soberns Activity and the transformer Microsoft Soberns Activity ano https://www.doi.org/10.1016/j.fluid.2016.12.002 https://www.doi.org/10.1021/acs.jced.8b01265 https://www.doi.org/10.1016/j.jct.2005.09.004 https://www.doi.org/10.1016/j.jct.2017.03.038 Solution of econazole nitrate in binary solvent seconazole nitrate in binary solvent separates or of binary methanal hased on gamma infinity data using common present of binary solvent seconazole nitrate in binary sol https://www.doi.org/10.1021/acs.jced.5b00201 http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1021/je500088z https://www.doi.org/10.1021/acs.jced.9b00406 https://www.doi.org/10.1016/j.jct.2018.03.010 https://www.doi.org/10.1021/je500396b https://www.doi.org/10.1016/j.jct.2016.07.001 https://www.doi.org/10.1007/s10765-010-0860-3 https://www.doi.org/10.1016/j.jct.2017.07.012 https://www.doi.org/10.1021/acs.jced.8b00720 https://www.doi.org/10.1016/j.jct.2007.06.010 Notarite ar, capacities of aqueousSalubitities ar, differing at our of a torregate the second of https://www.doi.org/10.1021/je101072d https://www.doi.org/10.1016/j.jct.2018.09.023 https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1016/j.fluid.2019.06.004 Solubility measurements and thermodynamic modeling of thermodynamic mo https://www.doi.org/10.1016/j.jct.2016.08.008 https://www.doi.org/10.1016/j.jct.2003.09.001 https://www.doi.org/10.1016/j.jct.2016.11.019

https://www.doi.org/10.1021/acs.jced.9b00381

The dissolution behaviour and apparent thermodynamic analysis of Apparent thermodynamic analysis of Measurant and Council in Pure and Solutive of 5-Fluorouracil in Pure and Binate Solutians Activity Coefficients of Solutes Dissolved in Two Mansky are received for together for a figure Solute for the solution of the figure Solution of the solution of the figure the solution of the figure solution of the solution of the solution of the figure solution of the solution Solventa grom 27 construction of constructions of the construction of organic solutes in

MESIAIRD of binary mixtures based on a TU-Marin of binary mixtures based on a tubeling and based of the two based of two estimes and spire differentind for Volume of Propranolol Hydrochloride

Fac Broxaweaor/NINCOMMERCIAL Second and a solution of a so from Its Azeotropic Aqueous Solution:

https://www.doi.org/10.1016/j.jct.2019.06.007 https://www.doi.org/10.1021/acs.jced.8b00425 https://www.doi.org/10.1021/je500050p https://www.doi.org/10.1021/acs.jced.8b00902 https://www.doi.org/10.1021/je900366m https://www.doi.org/10.1021/je300711r https://www.doi.org/10.1016/j.jct.2006.05.003 https://www.doi.org/10.1016/j.jct.2015.02.023 Activity and Sources in Sectration Aquids https://www.doi.org/10.1021/je200244p 24 Nd/ospholine) shancaution Acid (Apple) and of binary mixtures based on https://www.doi.org/10.1016/j.jct.2018.09.003 https://www.doi.org/10.1021/acs.jced.9b00490 https://www.doi.org/10.1021/je0504109 https://www.doi.org/10.1021/je201129y https://www.doi.org/10.1021/acs.jced.9b00286 https://www.doi.org/10.1016/j.jct.2004.07.015 **The first second state in the second state in** Suppose fine (Line attained at **Beiventsz and Saturation Apparent** Volume of Propranolol Hydrochloride Absahae Binadel Aquedation solvent in serie in the set for modynamic Proprietives of solute transfer into pentyl acedienias a drimetagetadene in offertives of solute transfer into pentyl acedienias a drimetagetadene in offertives of solute transfer into pentyl acedienias a drimetagetadene in offertives of solute transfer into pentyl acedienias a drimetagetadene in offertives of solute transfer into pentyl acedienias a drimetagetadene in offertives of solute transfer into pentyl acedienias a drimetagetadene in offertives of solute transfer into pentyl acedienias a drimetagetadene in offertives of solute transfer into pentyl acedienias a drimetagetadene in offertives of solute transfer into pentyl acedienias a drimetagetadene in offertives of solute transfer into pentyl acedienias a drimetagetadene in offertives of solute transfer into pentyl acedienias a drimetagetadene in offertives of solute transfer and bit acedienias a drimetagetadene in offertives of solute transfer and bit acedienias a drimetagetadene in offertives of solute transfer and bit acedienias a drimetagetadene in offertives offertives a solution offertives of offertives of solute transfer and the solution of acedienias a drimetagetadene in offertives offertives a solution offertives of offertives a solute transfer a solute transfer a solute transfertive and the solute transfertives of the solution of the solution offertives and the solute transfertives of offertives and the solute transfertives of offertives and the solute transfertives of the solute transfertives of offertives of the solute transfertives of the solute transfertives of offertives of the solute transfertives of the solute transfertives of offertives of the solute transfertives of the solute transfertives of offertives of the solute transfertives https://www.doi.org/10.1016/j.jct.2018.05.003 https://www.doi.org/10.1016/j.fluid.2017.12.035 https://www.doi.org/10.1016/j.jct.2019.05.004 https://www.doi.org/10.1021/acs.jced.8b00931 https://www.doi.org/10.1021/acs.jced.8b00067 https://www.doi.org/10.1016/j.fluid.2005.02.016 https://www.doi.org/10.1021/acs.jced.7b00316 Thermodynamic Functions for Solubility of 1-Hydroxybenzotriazole in side and solution of the second state https://www.doi.org/10.1016/j.jct.2016.07.023 https://www.doi.org/10.1016/j.jct.2018.05.012 https://www.doi.org/10.1016/j.fluid.2016.02.004 https://www.doi.org/10.1016/j.jct.2017.02.008 https://www.doi.org/10.1021/je5010643 https://www.doi.org/10.1021/je060311a https://www.doi.org/10.1021/acs.jced.9b00362 https://www.doi.org/10.1016/j.fluid.2006.03.020 https://www.doi.org/10.1021/acs.jced.7b00905

Solid-liquid equilibrium and phase diagram for the ternary Banger Die Solventsoxane) system: Solubility of Benzoic Acid in Mixed

Solvents: Isothermal Vapor-Liquid Equilibrium Data for the Systems 1,4-Dioxane +

Hiddogen and an analysis of the solutes in water. XXII. Cyclic ethers at the solute in the solute of the s Containing Ionic Liquids. 8. Activity

Liquids Bearing Short Linear Alkyl Side Chains of Three to Five Carbons:

https://www.doi.org/10.1016/j.jct.2016.06.011 https://www.doi.org/10.1021/je1003934 https://www.doi.org/10.1021/je060408x https://www.doi.org/10.1021/je0301287 Data for the Systems 1,4-Dioxane + Waterin approximate a properties for any satement review maneral bioincy any satement review manerave any satement review manerave any satement review maner https://www.doi.org/10.1016/j.jct.2019.01.013 https://www.doi.org/10.1007/s10765-006-0063-0 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1047 **Segan D'Sel dies and / witari-in cheased:** https://www.doi.org/10.1016/j.jct.2017.10.003 https://www.doi.org/10.1016/j.jct.2012.09.033 https://www.doi.org/10.1016/j.jct.2012.09.033 https://www.doi.org/10.1016/j.jct.2012.09.033 https://www.doi.org/10.1016/j.jct.2012.09.033 https://www.doi.org/10.1016/j.jct.2012.09.033 https://www.doi.org/10.1016/j.jct.2012.05.017 https://www.doi.org/10.1016/j.jct.2012.05.014 https://www.doi.org/10.1016/j.jct.2015.05.014 https://www.doi.org/10.1016/j.jct.2013.00.26 https://www.doi.org/10.1016/j.jct.2013.10.026 https://www.doi.org/10.1016/j.jct.2013.10.026 https://www.doi.org/10.1016/j.jct.2013.00.06041 https://www.doi.org/10.1016/j.jct.2013.00.06041 https://www.doi.org/10.1016/j.jct.2013.00.06041 https://www.doi.org/10.1021/je700296x https://www.doi.org/10.1021/je700426k https://www.doi.org/10.1016/j.jct.2009.11.005 https://www.doi.org/10.1021/acs.jced.8b01014 Netits of voltage methyl-4-nitrobenzoic acid in binary solvent mixtures of Repair of the solution of the solut https://www.doi.org/10.1016/j.jct.2016.10.019 https://www.doi.org/10.1016/j.fluid.2010.02.018 Containing Ionic Liquids. 8. Activity Get inty and the ionic liquids. 8. Activity Https://www.doi.org/10.1016/j.jct.2015.02.024 https://www.doi.org/10.1021/acs.jced.6b00230 https://www.doi.org/10.1016/j.jct.2017.01.006 For inty ionic liquids. 9. Activity Https://www.doi.org/10.1016/j.jct.2017.01.006 Https://www.doi.org/10.1016/j.jct.2012.08.022 Containing Ionic Liquids. 8. Activity https://www.doi.org/10.1016/j.jct.2017.01.006 Https://www.doi.org/10.1021/je4001894 Https://www.doi.org/10.1021 https://www.doi.org/10.1021/acs.jced.6b00230

Experimental and theoretically study of https://www.doi.org/10.1016/j.jct.2014.12.027 interaction between organic Activity for the state of the second compounds and movement and the second second

The Yaws Handbook of Vapor Pressure: Study of Ether-, Alcohol-, or

Study of Ether-, Alcohol-, or Cyano-Functionalized lonic Liquids Beliky Linwers E Guis Grindmatography: 5-Chloro-8-hydroxyquinoline and 5heDrondwords with the melaration of the Line of the Statistic Insenaration of the Line of the Statistic Insenaration of the Line of the Line of the Statistic Insenaration of the Line of the Line of the Statistic Insenaration of the Line of the Line of the Statistic Insenaration of the Line of the Lin

https://www.doi.org/10.1021/acs.jced.6b00816 https://www.doi.org/10.1016/j.tca.2005.06.011 http://pubs.acs.org/doi/abs/10.1021/ci990307I https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure https://www.doi.org/10.1021/je900838a https://www.doi.org/10.1021/acs.jced.9b00028 https://www.doi.org/10.1016/j.jct.2018.02.014 https://www.doi.org/10.1021/acs.jced.6b00630 https://www.doi.org/10.1016/j.fluid.2004.11.006 https://www.doi.org/10.1016/j.jct.2016.06.015 https://www.doi.org/10.1016/j.jct.2018.11.026 https://www.doi.org/10.1016/j.fluid.2006.10.024 **Experience of the operation operati** https://www.doi.org/10.1021/acs.jced.5b00246

Legend

af:	Acentric Factor
affp:	Proton affinity
aigt:	Autoignition Temperature
basg:	Gas basicity
chl:	Standard liquid enthalpy of combustion
cpg:	Ideal gas heat capacity
cpl:	Liquid phase heat capacity
dm:	Dipole Moment
dvisc:	Dynamic viscosity
econd:	Electrical conductivity
fll:	Lower Flammability Limit
flu:	Upper Flammability Limit
fpc:	Flash Point (Closed Cup Method)
fpo:	Flash Point (Open Cup Method)
gf:	Standard Gibbs free energy of formation
gyrad:	Radius of Gyration
hf:	Enthalpy of formation at standard conditions
hfl:	Liquid phase enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions
hfust:	Enthalpy of fusion at a given temperature
hsubt:	Enthalpy of sublimation at a given temperature
hvap:	Enthalpy of vaporization at standard conditions
hvapt:	Enthalpy of vaporization at a given temperature
ie:	Ionization energy
kvisc:	Kinematic viscosity
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
pc:	Critical Pressure
pvap:	Vapor pressure
rfi:	Refractive Index
rhoc:	Critical density
rhol:	Liquid Density
rinpol:	Non-polar retention indices
ripol:	Polar retention indices
sdco:	Self diffusion coefficient
sfust:	Entropy of fusion at a given temperature

sg:	Molar entropy at standard conditions
sl:	Liquid phase molar entropy at standard conditions
speedsl:	Speed of sound in fluid
srf:	Surface Tension
tb:	Normal Boiling Point Temperature
tc:	Critical Temperature
tf:	Normal melting (fusion) point
tfp:	Melting point
tt:	Triple Point Temperature
vc:	Critical Volume
zc:	Critical Compressibility
zra:	Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/64-012-7/1-4-Dioxane.pdf

Generated by Cheméo on 2024-04-27 23:13:20.319468767 +0000 UTC m=+16548849.240046089. Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.