1,4-Dioxane

Other names: 1,4-Diethylene dioxide

1,4-Diethyleneoxide

1,4-Dioxacyclohexane

1,4-Dioxan

1,4-Dioxin, tetrahydro-DIETHYLENE DIOXIDE DIETHYLENE ETHER

Di(ethylene oxide)

Diokan Dioksan

Diossano-1,4 Dioxaan-1,4

Dioxan
Dioxan-1,4
Dioxane
Dioxane-1,4
Dioxanne

Dioxyethylene ether Glycol ethylene ether Glycol ethylene ether 8

NCI-C03689

NE 220 NSC 8728 P-DIOXANE

Rcra waste number U108 Tetrahydro-1,4-dioxin Tetrahydro-p-dioxin

UN 1165 p-Dioxan

p-Dioxin, tetrahydro-

Inchi: InChI=1S/C4H8O2/c1-2-6-4-3-5-1/h1-4H2
InchiKey: RYHBNJHYFVUHQT-UHFFFAOYSA-N

Formula: C4H8O2 SMILES: C1COCCO1

Mol. weight [g/mol]: 88.11 **CAS:** 123-91-1

Physical Properties

Property code	Value	Unit	Source
af	0.2810		KDB
affp	797.40	kJ/mol	NIST Webbook
aigt	453.15	K	KDB
basg	770.00	kJ/mol	NIST Webbook
chl	-2346.20	kJ/mol	NIST Webbook
chl	-2362.23 ± 0.99	kJ/mol	NIST Webbook
chl	-2186.80	kJ/mol	NIST Webbook
chl	-2363.90 ± 0.50	kJ/mol	NIST Webbook
dm	0.40	debye	KDB
dvisc	0.0011960	Paxs	Excess Molar Volumes and Viscosity Deviations of Binary Liquid Mixtures of 1,3-Dioxolane and 1,4-Dioxane with Butyl Acetate, Butyric Acid, Butylamine, and 2-Butanone at 298.15 K
fII	1.97	% in Air	KDB
flu	22.50	% in Air	KDB
fpc	296.48	K	KDB
fpo	285.37	K	KDB
gf	-180.90	kJ/mol	KDB
gyrad	3.1100		KDB
hf	-315.30 ± 0.80	kJ/mol	NIST Webbook
hf	-315.30	kJ/mol	KDB
hf	-318.00 ± 2.00	kJ/mol	NIST Webbook
hfl	-353.50 ± 0.80	kJ/mol	NIST Webbook
hfl	-355.13 ± 0.86	kJ/mol	NIST Webbook
hfus	12.84	kJ/mol	Joback Method
hvap	34.26	kJ/mol	Joback Method
ie	9.19 ± 0.01	eV	NIST Webbook
ie	9.41	eV	NIST Webbook
ie	9.43	eV	NIST Webbook
ie	9.40	eV	NIST Webbook
ie	9.13 ± 0.03	eV	NIST Webbook
ie	9.19 ± 0.01	eV	NIST Webbook
ie	9.30 ± 0.10	eV	NIST Webbook
ie	9.43	eV	NIST Webbook
log10ws	0.43		Crippen Method
logp	0.033		Crippen Method
mcvol	68.100	ml/mol	McGowan Method

ne	5000.00 ± 70.00	kPa	NIST Webbook
pc pc	5210.00 ± 68.94	kPa	NIST Webbook
рс	5471.55 ± 303.98	kPa	NIST Webbook
рс	5210.00	kPa	KDB
rhoc	360.35 ± 9.69	kg/m3	NIST Webbook
rinpol	692.00	kg/III3	NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	697.00		NIST Webbook
·	694.00		NIST Webbook
rinpol	694.00		NIST Webbook
rinpol	705.00		NIST Webbook
rinpol	690.00		NIST Webbook
rinpol			
rinpol	702.00		NIST Webbook
rinpol	690.00		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	706.00		NIST Webbook
rinpol	692.00		NIST Webbook
rinpol	686.00		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	690.00		NIST Webbook
rinpol	699.00		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	693.00		NIST Webbook
rinpol	670.10		NIST Webbook
rinpol	648.00		NIST Webbook
rinpol	687.00		NIST Webbook
rinpol	669.70		NIST Webbook
rinpol	671.00		NIST Webbook
rinpol	731.30		NIST Webbook
rinpol	718.00		NIST Webbook
rinpol	643.00		NIST Webbook
rinpol	705.00		NIST Webbook
rinpol	721.00		NIST Webbook
rinpol	648.00		NIST Webbook
rinpol	687.00		NIST Webbook
rinpol	702.00		NIST Webbook
rinpol	660.30		NIST Webbook
rinpol	680.00		NIST Webbook
rinpol	697.00		NIST Webbook
rinpol	651.00		NIST Webbook
rinpol	687.00		NIST Webbook
rinpol	690.00		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	696.00		NIST Webbook
·			

rinpol	698.00		NIST Webbook
rinpol	694.00		NIST Webbook
rinpol	690.00		NIST Webbook
rinpol	690.00		NIST Webbook
rinpol	680.00		NIST Webbook
ripol	1083.00		NIST Webbook
ripol	1093.00		NIST Webbook
ripol	1097.00		NIST Webbook
ripol	1081.00		NIST Webbook
ripol	1065.00		NIST Webbook
ripol	1066.00		NIST Webbook
ripol	1085.00		NIST Webbook
ripol	1065.00		NIST Webbook
ripol	1100.00		NIST Webbook
ripol	1083.00		NIST Webbook
ripol	1083.00		NIST Webbook
ripol	1065.00		NIST Webbook
ripol	1066.00		NIST Webbook
ripol	1084.00		NIST Webbook
ripol	1068.00		NIST Webbook
ripol	1105.00		NIST Webbook
sg	299.91	J/mol×K	NIST Webbook
sl	196.60	J/mol×K	NIST Webbook
tb	374.47	К	Study of isobaric vapour liquid equilibrium of some cyclic ethers with 1-chloropropane: Experimental results and SAFT-VR modelling
tb	374.45	К	Measurement and correlation of binary vapor liquid equilibria of isomeric butanols with 1,4-dioxane
tb	374.60	K	KDB
tb	374.52	К	Vapor-Liquid Equilibrium and Volumetric Measurements for Binary Mixtures of 1,4-Dioxane with Isomeric Chlorobutanes
tc	588.00 ± 2.00	K	NIST Webbook
tc	587.00	K	KDB
tc	587.30 ± 1.00	K	NIST Webbook
tc	588.15 ± 2.00	K	NIST Webbook
tc	585.15 ± 2.00	K	NIST Webbook
			

tf	284.48	К	Efficient determination of crystallisation and melting points at low cooling and heating rates with novel computer controlled equipment
tf	284.90	K	KDB
tt	284.10 ± 0.20	K	NIST Webbook
VC	0.239 ± 0.004	m3/kmol	NIST Webbook
VC	0.239 ± 0.008	m3/kmol	NIST Webbook
VC	0.238	m3/kmol	KDB
ZC	0.2540620		KDB
zra	0.27		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	168.26	J/mol×K	543.56	Joback Method
cpg	149.90	J/mol×K	473.75	Joback Method
cpg	139.92	J/mol×K	438.85	Joback Method
cpg	129.39	J/mol×K	403.94	Joback Method
cpg	118.28	J/mol×K	369.04	Joback Method
cpg	176.66	J/mol×K	578.47	Joback Method
cpg	159.34	J/mol×K	508.66	Joback Method
cpl	147.90	J/mol×K	298.00	NIST Webbook
cpl	147.90	J/mol×K	298.15	NIST Webbook
cpl	155.60	J/mol×K	298.00	NIST Webbook
cpl	140.20	J/mol×K	298.00	NIST Webbook
cpl	149.00	J/mol×K	298.15	NIST Webbook
cpl	149.00	J/mol×K	298.00	NIST Webbook
cpl	149.73	J/mol×K	298.15	NIST Webbook
cpl	150.77	J/mol×K	298.15	NIST Webbook
cpl	152.97	J/mol×K	298.20	NIST Webbook
cpl	146.00	J/mol×K	291.00	NIST Webbook
cpl	150.57	J/mol×K	298.15	NIST Webbook
cpl	149.65	J/mol×K	298.15	NIST Webbook
cpl	160.40	J/mol×K	333.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model

cpl 158.40 J/molxK 323.15 Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model cpl 156.50 J/molxK 318.15 Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model cpl 155.30 J/molxK 313.15 Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model cpl 153.70 J/molxK 308.15 Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model cpl 152.10 J/molxK 303.15 Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model cpl 152.10 J/molxK 303.15 Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	cpl	160.20	J/mol×K	328.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model
properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model cpl 155.30 J/mol×K 313.15 Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model cpl 153.70 J/mol×K 308.15 Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model cpl 153.70 J/mol×K 308.15 Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model cpl 152.10 J/mol×K 303.15 Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	cpl	158.40	J/mol×K	323.15	properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell
properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model cpl 153.70 J/molxK 308.15 Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model cpl 152.10 J/molxK 303.15 Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model cpl 152.10 J/molxK 303.15 Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K	cpl	156.50	J/mol×K	318.15	properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell
properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model cpl 152.10 J/mol×K 303.15 Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K	cpl	155.30	J/mol×K	313.15	properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell
properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K	cpl	153.70	J/mol×K	308.15	properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell
extended cell model	cpl	152.10	J/mol×K	303.15	properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell
cpl 154.80 J/mol×K 296.00 NIST Webbook	cpl	154.80	J/mol×K	296.00	NIST Webbook

cpl	151.00	J/mol×K	298.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	150.00	J/mol×K	293.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	146.70	J/mol×K	288.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	150.65	J/mol×K	298.15	NIST Webbook	
cpl	149.49	J/mol×K	298.15	NIST Webbook	
dvisc	0.0011780	Paxs	298.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques	
dvisc	0.0011850	Paxs	298.15	Viscosity Behavior of Some Oxygen Containing Compounds	
dvisc	0.0010290	Paxs	308.15	Viscosity Behavior of Some Oxygen Containing Compounds	
dvisc	0.0014381	Paxs	288.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	

dvisc	0.0006400	Paxs	343.15	Densities and
avioo	0.0000100	1 4.40	0.10.10	Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K
dvisc	0.0007210	Paxs	333.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K
dvisc	0.0008250	Paxs	323.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K
dvisc	0.0009460	Paxs	313.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K
dvisc	0.0011020	Paxs	303.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K
dvisc	0.0013120	Paxs	293.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K
dvisc	0.0015900	Paxs	283.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K

dvisc	0.0008909	Paxs	318.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques	
dvisc	0.0009985	Paxs	308.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques	
dvisc	0.0007991	Paxs	318.15	Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K	
dvisc	0.0009268	Paxs	308.15	Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K	
dvisc	0.0012236	Paxs	298.15	Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K	

dvisc	0.0009575	Paxs	313.15 Viscosities and Densities of Binary Mixtures of 1,4-Dioxane, Carbon Tetrachloride, and Butanol at 303.15 K, 308.15 K, and 313.15 K
dvisc	0.0010295	Paxs	308.15 Viscosities and Densities of Binary Mixtures of 1,4-Dioxane, Carbon Tetrachloride, and Butanol at 303.15 K, 308.15 K, and 313.15 K
dvisc	0.0010983	Paxs	303.15 Viscosities and Densities of Binary Mixtures of 1,4-Dioxane, Carbon Tetrachloride, and Butanol at 303.15 K, 308.15 K, and 313.15 K
dvisc	0.0010985	Paxs	303.15 Viscosities and Densities of Binary Mixtures of 1,4-Dioxane, Carbon Tetrachloride, and Butanol at 303.15 K, 308.15 K, and 313.15 K
dvisc	0.0005770	Paxs	353.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0006400	Paxs	343.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0007180	Paxs	333.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents

dvisc	0.0008140	Paxs	323.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0009340	Paxs	313.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0010870	Paxs	303.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0011800	Paxs	298.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0012860	Paxs	293.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0009477	Paxs	313.15 Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K
dvisc	0.0010219	Paxs	308.15 Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K

dvisc	0.0011065	Pa×s	303.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to	
dvisc	0.0012023	Paxs	298.15	313.15) K Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	
dvisc	0.0013111	Paxs	293.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	
dvisc	0.0014400	Paxs	288.15	Viscosity Behavior of Some Oxygen Containing Compounds	
econd	0.00	S/m	303.15	Micellar Properties and Related Thermodynamic Parameters of the 14-6-14, 2Br- Gemini Surfactant in Water + Organic Solvent Mixed Media	
econd	0.00	S/m	315.15	Micellar Properties and Related Thermodynamic Parameters of the 14-6-14, 2Br- Gemini Surfactant in Water + Organic Solvent Mixed Media	

econd	0.00	S/m	323.15	Micellar Properties and Related Thermodynamic Parameters of the 14-6-14, 2Br- Gemini Surfactant in Water + Organic Solvent Mixed Media	
econd	0.00	S/m	298.15	Micellar Properties and Related Thermodynamic Parameters of the 14-6-14, 2Br- Gemini Surfactant in Water + Organic Solvent Mixed Media	
hfust	12.84	kJ/mol	284.10	NIST Webbook	
hfust	12.84	kJ/mol	284.10	NIST Webbook	
hfust	11.88	kJ/mol	283.20	NIST Webbook	
hfust	2.35	kJ/mol	272.90	NIST Webbook	
hsubt	35.60	kJ/mol	254.50	NIST Webbook	
hvapt	35.80	kJ/mol	273.00	NIST Webbook	
hvapt	36.50	kJ/mol	350.50	NIST Webbook	
hvapt	34.16	kJ/mol	374.50	NIST Webbook	
hvapt	37.30	kJ/mol	345.50	NIST Webbook	
hvapt	37.00	kJ/mol	318.00	NIST Webbook	
hvapt	38.00	kJ/mol	330.00	NIST Webbook	
kvisc	0.000011	m2/s	298.15	Experimental and predicted viscosities of binary mixtures of cyclic ethers with 1-chloropentane or 1-chlorohexane at 283.15, 298.15, and 313.15K	
kvisc	0.0000009	m2/s	313.15	Experimental and predicted viscosities of binary mixtures of cyclic ethers with 1-chloropentane or 1-chlorohexane at 283.15, 298.15, and 313.15K	

pvap	2.92	kPa	288.66	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	2.38	kPa	285.11	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	3.60	kPa	292.45	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	19.54	kPa	328.15	Isothermal (vapour + liquid) equilibrium of (cyclic ethers + chlorohexane) mixtures: Experimental results and SAFT modelling	
pvap	4.50	kPa	296.57	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	4.90	kPa	298.15	Isothermal (vapour + liquid) equilibrium of (cyclic ethers + chlorohexane) mixtures: Experimental results and SAFT modelling	
pvap	5.34	kPa	299.81	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	6.21	kPa	302.92	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	7.58	kPa	306.93	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	7.57	kPa	306.94	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	9.19	kPa	311.04	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	19.54	kPa	328.15	Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane
pvap	10.31	kPa	313.38	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	2.70	kPa	288.15	Vapor Pressures for 1,4-Dioxane + Tetrabutylammonium Nitrate, Water + Tetrabutylammonium Nitrate, and 1,4-Dioxane + Water + Tetrabutylammonium Nitrate
pvap	4.97	kPa	298.15	Vapor Pressures for 1,4-Dioxane + Tetrabutylammonium Nitrate, Water + Tetrabutylammonium Nitrate, and 1,4-Dioxane + Water + Tetrabutylammonium Nitrate
pvap	8.12	kPa	308.15	Vapor Pressures for 1,4-Dioxane + Tetrabutylammonium Nitrate, Water + Tetrabutylammonium Nitrate, and 1,4-Dioxane + Water + Tetrabutylammonium Nitrate
pvap	10.17	kPa	313.15	Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane

pvap	4.90	kPa	298.15	Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane	
pvap	10.29	kPa	313.38	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	4.50	kPa	296.56	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
rfi	1.42030		298.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of 1,4-Dioxane with Different Organic Liquids at (298.15, 303.15, and 308.15) K	
rfi	1.41170		318.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	

rfi	1.41390	313.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.41610	308.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.41820	303.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.42030	298.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	

rfi	1.42240	293.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.42450	288.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.41750	293.15	Solubilities of Phosphorus-Containing Compounds in Selected Solvents	
rfi	1.41410	308.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K	
rfi	1.41264	313.15	Volumetric and refractive properties of binary mixtures containing 1,4-dioxane and chloroalkanes	

rfi	1.41810	298.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K
rfi	1.42200	293.10 wate	Liquid liquid phase equilibria of the ternary system of er/1,4-dioxane/dihydromyrcene
rfi	1.41995	298.15	Volumetric and refractive properties of binary mixtures containing 1,4-dioxane and chloroalkanes
rfi	1.41760	303.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K
rfi	1.42000	298.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures

rfi	1.41440	308.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	
rfi	1.41430	308.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	
rfi	1.40920	318.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	
rfi	1.40840	318.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	
rfi	1.42030	298.15	Bubble Temperature Measurements on Binary Mixtures Formed by Cyclohexane at 94.7 kPa	

rfi	1.42010	298.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethanediol, + Hexane, + Tributylamine, or + Triethylamine at (298.15, 303.15, and 308.15) K	
rfi	1.41700	303.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethanediol, + Hexane, + Tributylamine, or + Triethylamine at (298.15, 303.15, and 308.15) K	
rfi	1.41430	308.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethanediol, + Hexane, + Tributylamine, or + Triethylamine at (298.15, 303.15, and 308.15) K	
rfi	1.42010	298.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethyl Acetoacetate, + Diethyl Oxalate, + Diethyl Phthalate, or + Dioctyl Phthalate at 298.15, 303.15, and 308.15 K	

rfi	1.42020	298.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethyl Acetoacetate, + Diethyl Oxalate, + Diethyl Phthalate, or + Dioctyl Phthalate at 298.15, 303.15, and 308.15 K	
rfi	1.41700	303.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethyl Acetoacetate, + Diethyl Oxalate, + Diethyl Phthalate, or + Dioctyl Phthalate at 298.15, 303.15, and 308.15 K	
rfi	1.41440	308.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethyl Acetoacetate, + Diethyl Oxalate, + Diethyl Phthalate, or + Dioctyl Phthalate at 298.15, 303.15, and 308.15 K	
rfi	1.41810	303.15	Thermodynamic Properties of Water + Tetrahydrofuran and Water + 1,4-Dioxane Mixtures at (303.15, 313.15, and 323.15) K	

rfi	1.42200		293.10	Liquid-Liquid Equilibrium for the System Water + 1,4-Dioxane + 2,6-Dimethyloct-7-en-2 over the Temperature Range of (343.2 to 358.2) K	?-ol
rfi	1.41640		303.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of 1,4-Dioxane with Different Organic Liquids at (298.15, 303.15, and 308.15) K	
rfi	1.41450		308.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of 1,4-Dioxane with Different Organic Liquids at (298.15, 303.15, and 308.15) K	
rhol	1022.28	kg/m3	303.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones	
rhol	1027.87	kg/m3	298.15	Surface study of mixtures containing cyclic ethers and isomeric chlorobutanes	
rhol	1027.82	kg/m3	298.15	Surface Tension and Surface Properties of Binary Mixtures of 1,4-Dioxane or N,N-Dimethyl Formamide with n-Alkyl Acetates	
rhol	1016.60	kg/m3	308.15	Densities, Speeds of Sound, Excess Molar Enthalpies, and Heat Capacities of o-Chlorotoluene and Cyclic Ether Mixtures	

rhol	1022.30	kg/m3	303.15 Densities, Speeds of Sound, Excess Molar Enthalpies, and Heat Capacities of o-Chlorotoluene and Cyclic Ether Mixtures
rhol	1027.90	kg/m3	298.15 Densities, Speeds of Sound, Excess Molar Enthalpies, and Heat Capacities of o-Chlorotoluene and Cyclic Ether Mixtures
rhol	964.63	kg/m3	353.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
rhol	976.37	kg/m3	343.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
rhol	987.97	kg/m3	333.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
rhol	999.49	kg/m3	323.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
rhol	1010.91	kg/m3	313.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol

rhol	1027.84	kg/m3	298.15 Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine-Flory-Patterson Modeling
rhol	1022.27	kg/m3	303.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
rhol	1027.92	kg/m3	298.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
rhol	1033.57	kg/m3	293.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
rhol	1011.10	kg/m3	313.15 Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and Butyl Vinyl Ether
rhol	1033.80	kg/m3	293.15 Volumetric properties of binary mixtures of (water + organic solvents) at temperatures between T = 288.15 K and T = 303.15 K at p = 0.1 MPa

rhol	1017.40	kg/m3	308.15	Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and Butyl Vinyl Ether	
rhol	1022.40	kg/m3	303.15	Unravelling various types of non-covalent interactions of benzyl amine with ethers in n-hexane at 303.15 K by ultrasonic and DFT methods	
rhol	1005.24	kg/m3	318.15	Hydrogen bond interactions in the blends of 1,4-dioxane with some 1, 2-disubstituted ethanes at T = (298.15, 308.15 and 318.15) K	
rhol	1016.78	kg/m3	308.15	Hydrogen bond interactions in the blends of 1,4-dioxane with some 1, 2-disubstituted ethanes at T = (298.15, 308.15 and 318.15) K	
rhol	1027.79	kg/m3	298.15	Hydrogen bond interactions in the blends of 1,4-dioxane with some 1, 2-disubstituted ethanes at T = (298.15, 308.15 and 318.15) K	
rhol	1027.90	kg/m3	298.15	Vapour liquid equilibrium of cyclic ethers with 1-chlorohexane: Experimental results and UNIFAC predictions	
rhol	1027.85	kg/m3	298.15	Experimental and predicted vapour liquid equilibrium of 1,4-dioxane with cycloalkanes and benzene	
rhol	1033.00	kg/m3	293.00	KDB	

rhol	1022.70	kg/m3	303.15	Densities,	
				Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and	
				Butyl Vinyl Ether	
rhol	1028.20	kg/m3	298.15	Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran,	
				1,4-Dioxane, Anisole, and Butyl Vinyl Ether	
rhol	999.58	kg/m3	323.15	Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure	
rhol	1005.28	kg/m3	318.15	Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure	
rhol	1010.98	kg/m3	313.15	Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure	

rhol	1016.66	kg/m3	308.15	Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure	
rhol	1022.33	kg/m3	303.15	Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure	
rhol	1027.99	kg/m3	298.15	Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure	
rhol	1005.29	kg/m3	318.15	Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine-Flory-Patters Modeling	on

rhol	1016.57	kg/m3	308.15	Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine-Flory-Patterson Modeling
rhol	1039.12	kg/m3	288.15	Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine-Flory-Patterson Modeling
rhol	1027.87	kg/m3	298.15	Isothermal Vapor-Liquid Equilibria and Excess Gibbs Energies for Binary Mixtures of Cyclic Ethers with 1,2-Dichloroethane
rhol	1016.59	kg/m3	308.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones
rhol	1027.94	kg/m3	298.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones

rhol	1033.59	kg/m3	293.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones	
rhol	1022.30	kg/m3	303.15	Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. Haloalkanes and other polar solvents	
rhol	999.40	kg/m3	323.15	Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3- methylimidazlouim tetraflouroborate and octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers	
rhol	1005.12	kg/m3	318.15	Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3- methylimidazlouim tetraflouroborate and octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers	

rhol	1010.83	kg/m3	313.15 Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3- methylimidazlouim tetraflouroborate and 1-octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers
rhol	1016.52	kg/m3	308.15 Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3- methylimidazlouim tetraflouroborate and 1-octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers
rhol	1022.19	kg/m3	303.15 Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3-methylimidazlouim tetraflouroborate and 1-octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers
rhol	1027.85	kg/m3	298.15 Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3-methylimidazlouim tetraflouroborate and 1-octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers

rhol	1033.50	kg/m3	293.15	Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3- methylimidazlouim tetraflouroborate and octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers	
rhol	1021.84	kg/m3	303.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory	
rhol	1027.51	kg/m3	298.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory	
rhol	1033.16	kg/m3	293.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory	
rhol	1027.88	kg/m3	298.15	(Vapour + liquid) equilibrium of binary mixtures (1,3-dioxolane or 1,4-dioxane + 2-methyl-1-propanol or 2-methyl-2-propanol) at isobaric conditions	

rhol	1038.78	kg/m3	288.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory	
sdco	0.00	m2/s	288.31	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	358.25	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	347.97	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	347.87	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	338.13	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	338.12	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	338.09	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	327.95	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	327.94	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	318.24	Viscous Calibration Liquids for Self-diffusion Measurements	

sdco	0.00	m2/s	317.85	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	308.06	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	307.92	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	303.12	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	298.20	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	298.18	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	298.17	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	293.11	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	298.13	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	288.33	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	358.49	Viscous Calibration Liquids for Self-diffusion Measurements	
sfust	41.90	J/mol×K	283.20	NIST Webbook	
sfust	45.19	J/mol×K	284.10	NIST Webbook	
sfust	8.79	J/mol×K	272.90	NIST Webbook	

speedsl	1346.30	m/s	298.15	Compressibility	
				Studies of Binary Solutions Involving Water as a Solute in Nonaqueous Solvents at T) 298.15 K	
speedsl	1343.60	m/s	298.15	Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures	
speedsl	1278.80	m/s	313.15	Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures	
speedsl	1279.80	m/s	313.15	Densities and speeds of sound for binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-1-propanol or 2-methyl-2-propanol) at the temperatures 298.15 K and 313.15 K	
speedsl	1344.80	m/s	298.15	Densities and speeds of sound for binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-1-propanol or 2-methyl-2-propanol) at the temperatures 298.15 K and 313.15 K	

speedsl	1367.20	m/s	293.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1344.70	m/s	298.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1323.10	m/s	303.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1301.20	m/s	308.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1279.70	m/s	313.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	

speedsl	1258.60	m/s	318.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1409.60	m/s	283.15	Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures	
speedsl	1357.70	m/s	295.15	Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and 313.15) K	
speedsl	1344.80	m/s	298.15	Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and 313.15) K	
speedsl	1331.90	m/s	301.15	Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and 313.15) K	

speedsl	1319.00	m/s	304.15	Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and 313.15) K	
speedsl	1306.20	m/s	307.15	Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and 313.15) K	
speedsl	1293.30	m/s	310.15	Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and 313.15) K	
speedsl	1280.40	m/s	313.15	Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and 313.15) K	
srf	0.04	N/m	283.15	Thermophysical study of 1,4-dioxane with cycloalkane mixtures	
srf	0.03	N/m	298.15	Thermophysical study of 1,4-dioxane with cycloalkane mixtures	

N/m

313.15

Thermophysical study of 1,4-dioxane with cycloalkane mixtures

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tfp	285.08	K	101.30 N-r	(Solid + liquid) phase equilibria of binary mixtures containing methyl-2-pyrrolidino and ethers at atmospheric pressure

Correlations

Information	Value
-------------	-------

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.48111e+01
Coeff. B	-3.42606e+03
Coeff. C	-3.81740e+01
Temperature range (K), min.	274.07
Temperature range (K), max.	398.83

Information	Value
-------------	-------

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	7.69176e+01
Coeff. B	-7.07594e+03
Coeff. C	-9.15152e+00
Coeff. D	5.90158e-06
Temperature range (K), min.	275.00
Temperature range (K), max.	587.00

Datasets

Mass density, kg/m3

Pressure, kPa - Liquid	Temperature, K - Liquid	Mass density, kg/m3 - Liquid
85.90	298.15	1027.93
Reference	https	://www.doi.org/10.1016/i.fluid.2013.05.001

Viscosity, Pa*s

Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid
303.15	101.33	0.0010750
Reference		https://www.doi.org/10.1016/j.tca.2009.07.008

Temperature, K	Pressure, kPa	Viscosity, Pa*s
303.15	101.30	0.0010224
Reference		https://www.doi.org/10.1021/je034204h

Sources

Solubility Study of (2E)-1-(3-Pyridyl)-3-(dimethylamino)-2-propen-1-one Magnizarie Phase Scherolation of inary Solubilities of the Scherolation of inary Solubilities of the Solvents from (278.15 to 360.15) K.:
Infinite Dilution Activity Coefficients of Solutes Dissolved in Two Temporal Receives and Henry's law Solutes in Solutes and Henry's law Solutes in Solutes of Solutes and Henry's law Solutes in Solutes of Solutes and Henry's law Solutes in Solutes in Solutes in Solutes in Solutes in Solutes in Solutes and Henry's law Solutes in Solutes in

```
Liquid - Liquid Equilibria for the
 Liquid - Liquid Equilibria for the Ternary Systems of Per fl uorohexane Solucinity Moria methyl-chnity densoric Teiden binary spilvent enjoy up the series of Brieffich and support the properties of Brieffich and support the series of Brieffich and support the support the series of Brieffich and support the series of Brieffich and support the series of 
                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je301149f
                                                                                                                                                                                                                                                                                                                                                            https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1047
 Animals of present the property of the propert
                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.jct.2018.07.024
                                                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2016.08.007
                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.6b00576
                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.5b00167
                                                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.fluid.2017.06.001
                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.9b00778
     ลือให้หันไข้ boendciedle limith
โปษยาข้องทุกภาณจระงาโด liquid
2)อำนาจากจะบนหลางอุทเลยเท็บ12 Pure
The Diagram of the Angle of Market 1912 Pure so finished the street of the Control of the Properties of the Control of the Contro
                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2014.04.024
                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2009.01.010
                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.9b00381
        Solubilities of
       TlassYammaldลองปรุงเหต่องเลเอยกระทย in
TIPESY PMER LIGHT OF MENTS LAW

DIFFERENCE Solvents from 289.25 to be of mation of Henry's Law

Constants Using Internal Standards with being referenced in the modelling for manufacture of the modelling of the mod
                                                                                                                                                                                                                                                                                                                                                            https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je3010535
                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2016.11.019
                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/acs.jced.9b00490
                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.9b00190
                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2006.10.024
                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2018.05.017
                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2016.01.022
  determination of the recipility of the recipilit
                                                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/acs.jced.8b00601
https://www.doi.org/10.1016/j.jct.2011.11.021
https://www.doi.org/10.1016/j.jct.2011.11.021
https://www.doi.org/10.1016/j.jct.2011.11.021
https://www.doi.org/10.1016/j.jct.2011.05.036
https://www.doi.org/10.1021/je7004787
https://www.doi.org/10.1016/j.jct.2011.05.036
```

Activity coefficients at infinite dilution https://www.doi.org/10.1016/j.jct.2015.02.024 and physicochemical properties for Goganic solution Studies at udicated in the yonic Former Salvilles Studies of iB in a yonic golutions Involving Water as a Solute in the property of the state https://www.doi.org/10.1021/je0601098 http://link.springer.com/article/10.1007/BF02311772 Deipera de vo Constant soi les sanis Camponunts in Water and n-Octane at T depuis les difficients at Atjustic phate:

Authority in the infinite phate:

Authority in the lonic phate:

Aut properties transported and selections https://www.doi.org/10.1021/je900711h of Organic Compounds in TIBNITY Department activity regarding that is a property of the proper of Organic Compounds in https://www.doi.org/10.1016/j.fluid.2015.06.041 AND WASHING HOPEN LEROND

AND WASHING HOPEN LIBERT OF THE PROPERTY PRINTED TO PROPERTY PROPERT https://www.doi.org/10.1016/j.jct.2018.01.003 https://www.doi.org/10.1016/j.jct.2016.05.027 https://www.doi.org/10.1021/je501011t https://www.doi.org/10.1016/j.tca.2009.07.008 https://www.doi.org/10.1021/je030107c And, Spende of the Province of the Singer word of the Singer was an one of the Singer was a singer wa https://www.doi.org/10.1021/acs.jced.6b00606 Solvati Recenes: 4, ipserd 49 ibs (4-aminobenzene) in https://www.chemeo.com/doc/models/crippen_log10ws The strong idea (4-aminobenzene) in binary aqueous solutions of E-gliobality (1994) (1994) (1995) (1 https://www.doi.org/10.1021/acs.jced.8b01265 https://www.doi.org/10.1021/je900366m https://www.doi.org/10.1021/acs.jced.8b00067 ลัคฟ 🕈 Dichloroethane) at T = (288.15 to 318.15) K. Experimental

Measurements and

Prigogine-Flory-Patterson Modeling:

Speeds of Sound and Isentropic Compressibilities for Binary Mixtures Beastivenc Visageities and Sciend Speastivenc Visageities and Sciend Speastivence of plants of the properties of the proper Speeds of Sound and Isentropic ationaphic Compounds in Biagright or the terisation vi) imide Using https://www.doi.org/10.1016/j.jct.2018.05.003 មានប្រជាពល់ ប្រជាពល់ ប្ជាពល់ ប្រជាពល់ ប្រជាពលល់ https://www.doi.org/10.1016/j.jfuid.2015.03.04
https://www.doi.org/10.1016/j.jfuid.2015.03.04
https://www.doi.org/10.1016/j.jfuid.2015.03.04
https://www.doi.org/10.1016/j.jfuid.2015.03.04
https://www.doi.org/10.1016/j.jfuid.2015.03.04
https://www.doi.org/10.1021/je500286x
https://www.doi.org/10.1021/je500286x
https://www.doi.org/10.1016/j.jfuid.2015.03.04
https://www.doi.org/10.1021/je500286x
https://www.doi.org/10.1016/j.jfuid.2015.03.04
https://www.doi.org/10.1021/je500286x
https://www.doi.org/10.1016/j.jfuid.2015.03.04
https://www.doi.org/10.1021/je500286x
https://www.doi.org/10.1016/j.jfuid.2015.03.04
https://www.doi.org/10.1021/je500286x
https://www.doi.org/10.1016/j.jfuid.2015.03.04
https://www.doi.org/1 Containing Compounds:
Experimental and predicted excess
molar enthalpies for 1,4-dioxane +
Solubility Modeling and Solvents:
Measurement and correlation of binary

https://www.doi.org/10.1016/j.fluid.2006.03.020
https://www.doi.org/10.1021/acs.jced.8b00430
https://www.doi.org/10.1016/j.fluid.2007.11.002 vapor liquid equilibria of isomeric

Themosymanica properties of Mixtures https://www.doi.org/10.1021/je050440b Containing Ionic Liquids. 9. Activity Colfid to the Containing Ionic Liquids. 9. Activity thermodynamic and least solvents:

Although the least solvent the least solvents:

Although the least solvent the least solven Solubility and Phase Separation of 2-(N-Morpholino)ethanesulfonic Acid

atmospheric pressure:

https://www.doi.org/10.1007/s10765-006-0063-0 https://www.doi.org/10.1016/j.jct.2016.06.011 https://www.doi.org/10.1021/acs.jced.9b00406 https://www.doi.org/10.1007/s10765-010-0860-3 https://www.doi.org/10.1016/j.fluid.2006.03.020 https://www.doi.org/10.1016/j.fluid.2007.11.002 https://www.doi.org/10.1021/acs.jced.9b00693 https://www.doi.org/10.1021/je200244p https://www.doi.org/10.1021/acs.jced.8b00080 at (winder hilling of Activity Coefficients in the state of the state

Liquid liquid equilibria and partitioning https://www.doi.org/10.1016/j.fluid.2007.01.003 in organic aqueous systems: Thermodynamic modelling for https://www.doi.org/10.1016/j.jct.2016.10.006 Solubility of Shankovaring for Solubility of Shankovarina Representation of the Shankovarina Representation of the Solution of https://www.doi.org/10.1021/je030196t https://www.doi.org/10.1021/acs.jced.9b00385 https://www.doi.org/10.1021/je034204h
https://www.doi.org/10.1021/je034204h
https://www.doi.org/10.1021/je034204h
https://www.doi.org/10.1021/je034204h
https://www.doi.org/10.1021/je034204h
https://www.doi.org/10.1021/je034204h
https://www.doi.org/10.1021/je034204h
https://www.doi.org/10.1021/je034204h
https://www.doi.org/10.1021/je034204h
https://www.doi.org/10.1021/je400722h
https://www.doi.org/10.1016/j.jct.2019.06.025
https://www.doi.org/10.1016/j.jct.2013.11.027
https://www.doi.org/10.1016/j.jct.2013.11.027
https://www.doi.org/10.1016/j.jct.2013.017
https://www.doi.org/10.1021/je4010257
https://www.doi.org/10.1021/je4010257 https://www.doi.org/10.1021/je034204h https://www.doi.org/10.1021/acs.jced.9b00286 The containing of the containing 1,4-dioxane with the containing 1,4-dioxane of the containing 1 https://www.doi.org/10.1016/j.fluid.2005.09.010 Volumetric and retractive properties of binary mixtures containing 1,4-dioxane Exagginations and salpies of terrory mixtures of (methanol, ethanol + 247946 including the near critical regions of the wood of the containing the near critical regions of the wood of the containing the near critical regions of the wood of the containing the near critical regions of the wood of the containing the near critical regions of the wood of the containing the contai https://www.doi.org/10.1016/j.jct.2004.03.014 https://www.doi.org/10.1016/j.jct.2019.05.004 https://www.doi.org/10.1016/j.fluid.2011.09.033 https://www.doi.org/10.1021/je700426k Acid in Eleven Organic Solvents
Benetic and properties and activity coefficients at infinite dilution in the properties and activity coefficients at infinite dilution in the properties and activity coefficients at infinite dilution in the properties and activity coefficients at infinite dilution in the properties and activity coefficients at infinite dilution in the properties and activity coefficients at infinite dilution in the properties and activity coefficients at infinite dilution in the properties and activity coefficients at infinite dilution in the properties and activity coefficients at infinite dilution in the properties and activity coefficients at infinite dilution in the properties and activity coefficients at infinite dilution in the properties and activity coefficients at infinite dilution in the properties and activity coefficients at infinite dilution in the properties and activity coefficients at infinite dilution in the properties and activity coefficients at infinite dilution in the properties and activity coefficients at infinite dilution in the properties and infinite dilution in the properties and interest at infinite dilution in the properties and interest at infinite dilution in the properties are properties and interest Richard Meritan Solvents and phonens of the properties of the prop liquid 1-(2-hydroxyethyl)-

3-methylimidazolium

trifluorotris(perfluoroethyl)phosphate:

Surface study of mixtures containing https://www.doi.org/10.1016/j.jct.2006.10.003 cyclic ethers and isomeric Sinlubility: and preferential solvation of https://www.doi.org/10.1016/j.fluid.2010.09.027 indomethacin in 1,4-dioxane + water ទីស្ត្រខេត្ត Molau ខែព្រុំ Molau ខែព្រះ https://www.doi.org/10.1021/je049852v Mixtures of Ethanol + 1-Propanol + **จัยกล**าสรุเกษาดู เกล่ากลรงเกษา เกล่า เกล่ https://www.doi.org/10.1016/j.jct.2013.02.004 ween them to by in the DN River Gents
en infinite to lite on on organices lakes
en infinite to lite on on organices lakes
en infinite infinite in the search of the company
in the search of the search of the company
in the search of the search of the company
en infinite infinite in the search of the company
entry
entr https://www.doi.org/10.1021/acs.jced.6b00230 https://www.doi.org/10.1021/je030133a https://www.doi.org/10.1021/acs.jced.6b00816 https://www.doi.org/10.1016/j.fluid.2014.11.020 Bonapo sodseand mong or dications \$249344696410101041018 vising gas eHolasovicatinic Acid and Analysis of 8614614 Enecteients at infinite dilution https://www.doi.org/10.1021/acs.jced.9b00661 https://www.doi.org/10.1016/j.jct.2013.10.038 The symmetric distribution coefficients at the symmetric distribution of solid Liquid Phase

| https://www.doi.org/10.1016/j.jct.2017.01.006 |
| https://www.doi.org/10.1016/j.jct.2017.01.006 |
| https://www.doi.org/10.1021/acs.jced.9b00320 |
| https://www.doi.org/10.1021/jce.2004.07.015 |
| https://www.doi.org/10.1021/je.2004.07.015 |
| https://www.doi.org/1 of organic solutes in 1-hexyl-3https://www.doi.org/10.1016/j.jct.2017.10.003
on activity coefficients at infinite
Mnassyrement of Solid Liquid Phase
Equilibrity 19 to the College Solubility
and the College Solubili with a wolcal kage. This 1965, and 323.15) Weasurement and Correlation of the https://www.doi.org/10.1021/acs.jced.8b01205 Heasurement and Correlation of the Solubility of 2-Cyanoacetamide in 14 Meas Bravents of the solubility of the pation as a sure responsibility billion of the pation as a sure responsibility of the pation and the sure responsibility of the pation and the sure responsibility of the pation and the sure responsibility of the pation of the sure responsibility of the the sure responsibility of the pation of the sure responsibility of the the sure responsibility of the the sure responsibility of the sure responsibility of the sure responsibility of the sure responsibility of the the sure responsibility of the the sure responsibility of the sure responsibili https://www.doi.org/10.1016/j.fluid.2016.12.002

Colventsons:

```
Trigeminal Tricationic Ionic Liquids for
இசந்துக்குர்டி நகுத்திரும் and Phase
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/acs.jced.7b00609
    Diagram for Ternary
Manauramenhapathagrafiae of the
Saluality of 5 diver our action after and
some studies of some
Activities studies of some
                                                                                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1021/acs.jced.8b00425
                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2006.08.007
      Ashidikapalyielentsatuluinitsalilutini
antholysiagohamical properties for
antholysiagohamical properties for
antholysiagohamical watering and antholysiagohamical
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2011.04.018
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/je1003934
       Range 1973 Solve Ble propyl) pyridinium
BCM Hilly of Hensastaffor 1917 mide
Different Solvents between 278 K and
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/je700296x
       ฐրթություն study of molecular
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2018.02.014
   The modynamic study of molecular interaction-selectivity in separation by the selectivity in separa
      Biggarties of Enlysylletymphide lonic
                                                                                                                                                                                                                                                                                                                                                                                          https://en.wikipedia.org/wiki/Joback_method
    THE CONTROL OF THE PROPERTY OF
                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2017.07.027
 and preferential solvation for ribavirin flysing-displantifus of (methanol, in some less used in femole or single dioxane). Https://www.doi.org/10.1021/je0602723 https://www.doi.org/10.1021/je0003178 https://www.doi.org/10.1021/je0003178 https://www.doi.org/10.1021/je0003178 https://www.doi.org/10.1021/je0003178 https://www.doi.org/10.1021/acs.jced.5b00980 https://www.doi.org/10.1021/acs.jced.9b00308 https://www.doi.org/10.1021/acs.jced.9b00308 https://www.doi.org/10.1021/acs.jced.9b00308 https://www.doi.org/10.1021/acs.jced.9b00308 https://www.doi.org/10.1021/acs.jced.9b00362 https://www.doi.org/10.1021/acs.jced.9b00362 https://www.doi.org/10.1021/je700344f https://www
                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2017.01.016
      (283.15 to 343.15) K:
Solubility Modeling and Mixing
Solubility Modeling and Mixing
Thermodynamics of Thiamphenicol in Waters for the property of t
                                                                                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1021/acs.jced.7b00542
       Selveility Agempination and Myright Committee and Myright Committe
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/acs.jced.9b00229
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/je900894x
                                                                                                                                                                                                                                                                                                                                                                                        https://www.cheric.org/files/research/kdb/mol/mol1047.mol
       Water + Organic Solvent Mixed Media:
```

https://www.doi.org/10.1021/je201129y

Evaluation of the Performance of

Activity Coefficients at Infinite Dilution of Polar Solutes in (VBDQJIT3+rliquid)inqualibrium of binary Teixtaffas (January) inqualibrium of binary inqualibrium of binary inqualibrium of the properties of **Activity Coefficients at Infinite Dilution** 1-ethyl-3-methylimidazolium tenentodybanias iandardividwith four spesificientomatic inite dilution for organic on patricis of paragraph The control restriction of the prediction of the control of the co ACHRONIONICHINOThichenoRure Solvents 1611-1801-186-181 (ROBBING STOP) ERIX not: 4 ## 30 floor of the transport of the fall of the floor of the fall of the floor of https://www.doi.org/10.1021/je0301489 Acetoacetate, + Diethyl Oxalate, + Diethyl Phthalate, or + Dioctyl Phthalate t 2375 16365, and 308.15 K:

https://www.doi.org/10.1021/je060305e https://www.doi.org/10.1016/j.jct.2003.09.001 https://www.doi.org/10.1021/acs.jced.9b00028 https://www.doi.org/10.1021/je9010097 https://www.doi.org/10.1016/j.jct.2019.06.007 https://www.doi.org/10.1016/j.fluid.2005.02.016 https://www.doi.org/10.1016/j.jct.2018.05.012 https://www.doi.org/10.1016/j.jct.2019.03.004 https://www.doi.org/10.1021/je900351t https://www.doi.org/10.1021/je101168w https://www.doi.org/10.1016/j.jct.2016.06.015 https://www.doi.org/10.1016/j.jct.2018.08.028 https://www.doi.org/10.1016/j.jct.2007.06.010 https://www.doi.org/10.1016/j.fluid.2019.06.004 https://www.doi.org/10.1021/acs.jced.9b00294 https://www.doi.org/10.1016/j.jct.2005.07.012 https://www.doi.org/10.1021/acs.jced.9b00458

af: Acentric Factor affp: Proton affinity

aigt: **Autoignition Temperature**

basg: Gas basicity

Standard liquid enthalpy of combustion chl:

Ideal gas heat capacity cpg: cpl: Liquid phase heat capacity

dm: **Dipole Moment** dvisc: Dynamic viscosity econd: Electrical conductivity fII: Lower Flammability Limit flu: Upper Flammability Limit

fpc: Flash Point (Closed Cup Method) fpo: Flash Point (Open Cup Method)

gf: Standard Gibbs free energy of formation

Radius of Gyration gyrad:

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions **hfust:** Enthalpy of fusion at a given temperature

hsubt: Enthalpy of sublimation at a given temperaturehvap: Enthalpy of vaporization at standard conditionshvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energykvisc: Kinematic viscosity

log10ws: Log10 of Water solubility in mol/l logp: Octanol/Water partition coefficient mcvol: McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressurerfi: Refractive Indexrhoc: Critical densityrhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices sdco: Self diffusion coefficient

sfust: Entropy of fusion at a given temperature **sg:** Molar entropy at standard conditions

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

tfp: Melting point

tt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility
zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/64-012-7/1-4-Dioxane.pdf

Generated by Cheméo on 2024-04-10 17:51:56.822724059 +0000 UTC m=+15060765.743301370.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.