Cycloheptanol

Other names: SUBEROL

InChl=1S/C7H14O/c8-7-5-3-1-2-4-6-7/h7-8H,1-6H2

InchiKey: QCRFMSUKWRQZEM-UHFFFAOYSA-N

Formula: C7H14O

SMILES: OC1CCCCC1

Mol. weight [g/mol]: 114.19 CAS: 502-41-0

Physical Properties

Property code	Value	Unit	Source	
chl	-4362.00 ± 1.00	kJ/mol	NIST Webbook	
chl	-4429.20	kJ/mol	NIST Webbook	
gf	-116.41	kJ/mol	Joback Method	
hf	-291.88	kJ/mol	Joback Method	
hfus	7.71	kJ/mol	Joback Method	
hvap	48.46	kJ/mol	Joback Method	
log10ws	-0.88		Aqueous Solubility Prediction Method	
log10ws	-0.88		Estimated Solubility Method	
logp	1.701		Crippen Method	
mcvol	104.500	ml/mol	McGowan Method	
рс	4067.32	kPa	Joback Method	
rinpol	1022.00		NIST Webbook	
rinpol	1040.20		NIST Webbook	
rinpol	1028.00		NIST Webbook	
ripol	1566.00		NIST Webbook	
ripol	1566.00		NIST Webbook	
ripol	1547.00		NIST Webbook	
ripol	1566.00		NIST Webbook	
sl	241.64	J/mol×K	NIST Webbook	
tb	458.20	K	NIST Webbook	
tc	675.73	K	Joback Method	
tf	233.33	K	Joback Method	
tt	280.30 ± 0.02	K	NIST Webbook	
VC	0.371	m3/kmol	Joback Method	

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	308.33	J/mol×K	675.73	Joback Method	
cpg	244.83	J/mol×K	508.92	Joback Method	
cpg	258.94	J/mol×K	542.28	Joback Method	
cpg	272.33	J/mol×K	575.64	Joback Method	
cpg	285.01	J/mol×K	609.00	Joback Method	
cpg	297.01	J/mol×K	642.37	Joback Method	
cpg	230.00	J/mol×K	475.56	Joback Method	
cpl	250.22	J/mol×K	298.15	NIST Webbook	
cpl	244.30	J/mol×K	298.00	NIST Webbook	
cps	204.00	J/mol×K	270.00	Heat capacities of selected cycloalcohols	
cps	204.00	J/mol×K	270.00	Heat capacities of selected cycloalcohols	
cps	205.20	J/mol×K	271.34	Heat capacities of selected cycloalcohols	
cps	201.70	J/mol×K	268.00	Heat capacities of selected cycloalcohols	
cps	201.80	J/mol×K	268.00	Heat capacities of selected cycloalcohols	
cps	199.80	J/mol×K	266.00	Heat capacities of selected cycloalcohols	
cps	199.80	J/mol×K	266.00	Heat capacities of selected cycloalcohols	
cps	198.10	J/mol×K	264.00	Heat capacities of selected cycloalcohols	
cps	198.00	J/mol×K	264.00	Heat capacities of selected cycloalcohols	
cps	196.50	J/mol×K	262.00	Heat capacities of selected cycloalcohols	
cps	196.40	J/mol×K	262.00	Heat capacities of selected cycloalcohols	
cps	195.40	J/mol×K	260.73	Heat capacities of selected cycloalcohols	

cps	195.30	J/mol×K	260.59	Heat capacities of selected cycloalcohols	
cps	205.40	J/molxK	271.43	Heat capacities of selected cycloalcohols	
dvisc	0.0183260	Paxs	273.70	Joback Method	
dvisc	0.0044230	Paxs	314.07	Joback Method	
dvisc	0.0014757	Paxs	354.44	Joback Method	
dvisc	0.1241815	Paxs	233.33	Joback Method	
dvisc	0.0006163	Paxs	394.82	Joback Method	
dvisc	0.0001677	Paxs	475.56	Joback Method	
dvisc	0.0003026	Paxs	435.19	Joback Method	
hfust	1.51	kJ/mol	278.30	NIST Webbook	
hfust	0.88	kJ/mol	258.40	NIST Webbook	
hfust	1.60	kJ/mol	280.30	NIST Webbook	
hfust	2.93	kJ/mol	172.20	NIST Webbook	
hfust	1.60	kJ/mol	280.30	NIST Webbook	
hfust	0.55	kJ/mol	227.30	NIST Webbook	
hvapt	67.40	kJ/mol	302.50	NIST Webbook	
hvapt	64.70	kJ/mol	303.50	NIST Webbook	
pvap	0.01	kPa	288.22	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.02	kPa	293.72	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.02	kPa	293.73	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	7.50e-03	kPa	284.67	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.03	kPa	298.23	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.03	kPa	298.28	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	7.10e-03	kPa	284.35	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.04	kPa	303.37	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	0.06	kPa	307.00	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.07	kPa	308.15	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.08	kPa	310.11	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.12	kPa	315.14	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.16	kPa	319.51	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	0.18	kPa	320.88	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.02	kPa	292.50	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.03	kPa	298.44	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.02	kPa	293.86	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
sfust	3.39	J/mol×K	258.40	NIST Webbook	
sfust	16.98	J/mol×K	172.20	NIST Webbook	
sfust	5.72	J/mol×K	280.30	NIST Webbook	
sfust	2.44	J/mol×K	227.30	NIST Webbook	
srf	0.03	N/m	313.15	Surface Tensions of Dilute Solutions of Cycloheptanol in Ethylene Glycol	
srf	0.02	N/m	323.15	Surface Tensions of Dilute Solutions of Cycloheptanol in Ethylene Glycol	

srf	0.03	N/m	308.15	Surface Tensions of Dilute Solutions of Cycloheptanol in Ethylene Glycol	
srf	0.03	N/m	303.15	Surface Tensions of Dilute Solutions of Cycloheptanol in Ethylene Glycol	
srf	0.03	N/m	298.15	Surface Tensions of Dilute Solutions of Cycloheptanol in Ethylene Glycol	
srf	0.03	N/m	293.15	Surface Tensions of Dilute Solutions of Cycloheptanol in Ethylene Glycol	
srf	0.03	N/m	318.15	Surface Tensions of Dilute Solutions of Cycloheptanol in Ethylene Glycol	

Correlations

Information Value

Property code	pvap		
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$		
Coeff. A	-2.66915e+01		
Coeff. B	-5.85520e+03		
Coeff. C	7.60167e+00		
Coeff. D	-6.45886e-06		
Temperature range (K), min.	284.15		
Temperature range (K), max.	323.15		

Sources

Crippen Method: http://pubs.acs.org/doi/abs/10.1021/ci990307l

Surface Tensions of Dilute Solutions of https://www.doi.org/10.1021/je050055m
Cycloheptanol in Ethylene Glycol:
Aqueous Solubility Prediction Method: http://onschallenge.wikispaces.com/file/view/AqueousDataset002.xlsx/351826032/AqueousDataset002.xlsx/351826002.xlxx/351826002.xlxx/351826002.xlxx/351826002.xlxx/351826002.xlxx/351826002.xlxx/3518260002.xlxx/351826

KDB Vapor Pressure Data: https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=900

Estimated Solubility Method: http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt Vapor Pressure and Its Temperature Dependence of 28 Organic

69Apounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Aconols:

Heat capacities of selected cycloalcohols: Joback Method:

McGowan Method:

https://www.doi.org/10.1021/acs.jced.6b00576

https://www.cheric.org/files/research/kdb/mol/mol900.mol

http://webbook.nist.gov/cgi/cbook.cgi?ID=C502410&Units=SI

https://www.doi.org/10.1016/j.tca.2014.10.002 https://en.wikipedia.org/wiki/Joback_method

http://link.springer.com/article/10.1007/BF02311772

Legend

chl: Standard liquid enthalpy of combustion

Ideal gas heat capacity cpg:

Liquid phase heat capacity cpl: cps: Solid phase heat capacity

dvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

log10ws: Log10 of Water solubility in mol/l logp: Octanol/Water partition coefficient mcvol: McGowan's characteristic volume

Critical Pressure pc: Vapor pressure pvap:

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

sl: Liquid phase molar entropy at standard conditions

srf: Surface Tension

tb: Normal Boiling Point Temperature

Critical Temperature tc:

tf: Normal melting (fusion) point **Triple Point Temperature** tt:

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/47-790-3/Cycloheptanol.pdf

Generated by Cheméo on 2024-04-27 22:34:34.08199926 +0000 UTC m=+16546523.002576576.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.