Cyclohexylamine

Other names:	1-Aminocyclohexane
	1-Cyclohexylamine
	Aminocyclohexane
	Aminohexahydrobenzene
	Aniline, hexahydro-
	Benzenamine, hexahydro-
	СНА
	Cyclohexanamine
	Hexahydroaniline
	Hexahydrobenzenamine
	UN 2357
	cyclohexaneamine
Inchi:	InChI=1S/C6H13N/c7-6-4-2-1-3-5-6/h6H,1-5,7H2
InchiKey:	PAFZNILMFXTMIY-UHFFFAOYSA-N
Formula:	C6H13N
SMILES:	NC1CCCCC1
Mol. weight [g/mol]:	99.17
CAS:	108-91-8

Physical Properties

Property code	Value	Unit	Source
affp	934.40	kJ/mol	NIST Webbook
basg	899.60	kJ/mol	NIST Webbook
chl	-4077.50 ± 1.60	kJ/mol	NIST Webbook
chl	-4071.30 ± 1.30	kJ/mol	NIST Webbook
gf	90.54	kJ/mol	Joback Method
hf	-104.90 ± 1.30	kJ/mol	NIST Webbook
hf	-98.70	kJ/mol	NIST Webbook
hfl	-141.50 ± 1.60	kJ/mol	NIST Webbook
hfl	-147.70 ± 1.30	kJ/mol	NIST Webbook
hfus	8.33	kJ/mol	Joback Method
hvap	42.80 ± 0.10	kJ/mol	NIST Webbook
hvap	43.70	kJ/mol	NIST Webbook
hvap	42.80	kJ/mol	NIST Webbook
ie	8.40	eV	NIST Webbook
ie	8.86	eV	NIST Webbook
ie	8.40 ± 0.10	eV	NIST Webbook

log10ws	-1.77		Crippen Method
logp	1.278		Crippen Method
mcvol	94.520	ml/mol	McGowan Method
рс	4260.71	kPa	Joback Method
rinpol	862.00		NIST Webbook
rinpol	857.00		NIST Webbook
rinpol	862.00		NIST Webbook
rinpol	857.00		NIST Webbook
rinpol	848.00		NIST Webbook
rinpol	857.00		NIST Webbook
rinpol	863.00		NIST Webbook
rinpol	855.00		NIST Webbook
rinpol	851.00		NIST Webbook
rinpol	851.00		NIST Webbook
rinpol	870.00		NIST Webbook
ripol	1257.00		NIST Webbook
ripol	1257.00		NIST Webbook
ripol	1251.00		NIST Webbook
ripol	1267.00		NIST Webbook
ripol	1265.00		NIST Webbook
ripol	1222.00		NIST Webbook
ripol	1230.00		NIST Webbook
tb	407.70	К	NIST Webbook
tb	407.40 ± 0.50	К	NIST Webbook
tb	407.00 ± 0.50	K	NIST Webbook
tb	408.15 ± 5.00	К	NIST Webbook
tb	407.10	К	NIST Webbook
tb	405.15 ± 3.00	К	NIST Webbook
tc	626.80	К	Gas-Liquid Critical Temperatures of Some Alkenes, Amines, and Cyclic Hydrocarbons
tc	614.60	К	NIST Webbook
tf	255.40 ± 0.70	К	NIST Webbook
tf	252.00 ± 4.00	К	NIST Webbook
VC	0.334	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	206.73	J/mol×K	465.57	Joback Method
cpg	272.56	J/mol×K	649.65	Joback Method

cpg	260.96	J/mol×K	612.83	Joback Method	
cpg	248.59	J/mol×K	576.02	Joback Method	
срд	235.45	J/mol×K	539.20	Joback Method	
срд	221.50	J/mol×K	502.39	Joback Method	
срд	191.11	J/mol×K	428.76	Joback Method	
hfust	14.92	kJ/mol	255.40	NIST Webbook	
hfust	16.50	kJ/mol	255.10	NIST Webbook	
hvapt	40.80	kJ/mol	367.50	NIST Webbook	
hvapt	40.70 ± 0.10	kJ/mol	343.00	NIST Webbook	
hvapt	42.70 ± 0.10	kJ/mol	313.00	NIST Webbook	
hvapt	36.14	kJ/mol	407.10	NIST Webbook	
hvapt	40.80	kJ/mol	370.50	NIST Webbook	
hvapt	40.60	kJ/mol	385.00	NIST Webbook	
hvapt	39.60 ± 0.10	kJ/mol	358.00	NIST Webbook	
рvар	11.67	kPa	343.15	An equipment for dynamic measurements of vapour liquid equilibria and results in binary systems containing cyclohexylamine	
рvар	1.66	kPa	303.79	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
рvар	1.66	kPa	303.82	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	

рvар	1.66	kPa	303.84	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	2.85	kPa	313.79	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
рvар	2.85	kPa	313.81	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	4.76	kPa	323.92	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
рvар	4.76	kPa	323.97	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	

рvар	4.76	kPa	323.99	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
рvар	4.76	kPa	323.99	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
рvар	4.76	kPa	323.99	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
рvар	7.56	kPa	334.00	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	12.08	kPa	344.00	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	

рvар	17.65	kPa	354.06	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
рvар	25.96	kPa	364.10	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
рvар	25.96	kPa	364.10	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	25.94	kPa	364.13	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
рvар	25.96	kPa	364.13	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	

pvap	0.23	kPa	273.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	0.46	kPa	283.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	0.88	kPa	293.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	1.60	kPa	303.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	2.76	kPa	313.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	

рvар	4.57	kPa	323.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
рvар	7.32	kPa	333.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
рvар	11.35	kPa	343.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	17.98	kPa	353.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
рvар	25.06	kPa	363.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	

.:	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study	283.20	kPa	0.46	pvap
.:	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study	286.20	kPa	0.56	pvap
.:	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study	290.10	kPa	0.72	pvap
:	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study	293.30	kPa	0.91	рvар
.:	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study	296.20	kPa	1.06	рvар
.:	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study	298.10	kPa	1.18	рvар
.:	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study	299.30	kPa	1.28	рvар
.:	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study	302.30	kPa	1.54	pvap
.:	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study	305.30	kPa	1.79	pvap
	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study	308.30	kPa	2.11	рvар

pvap	7.51	kPa	333.15	Activity Coefficients at Infinite Dilution of Cylcohexylamine + Octane, Toluene, Ethylbenzene, or Aniline and Excess Molar Volumes in Binary Mixtures of Cyclohexylamine + Heptane, Octane, Nonane, Decane, Undecane, Aniline, or Water	
рvар	0.92	kPa	293.88	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
рvар	0.92	kPa	293.88	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	0.92	kPa	293.86	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	

рvар	0.92	kPa	293.83	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
рvар	0.25	kPa	274.30	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
рvар	25.59	kPa	363.15	An equipment for dynamic measurements of vapour liquid equilibria and results in binary systems containing cyclohexylamine	
рvар	17.53	kPa	353.15	An equipment for dynamic measurements of vapour liquid equilibria and results in binary systems containing cyclohexylamine	
рvар	7.52	kPa	333.15	An equipment for dynamic measurements of vapour liquid equilibria and results in binary systems containing cyclohexylamine	

pvap	25.59	kPa	363.15	Activity Coefficients at Infinite Dilution of Cylcohexylamine + Octane, Toluene, Ethylbenzene, or Aniline and Excess Molar Volumes in Binary Mixtures of Cyclohexylamine + Heptane, Octane, Nonane, Decane, Undecane, Aniline, or Water	
pvap	0.49	kPa	283.86	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
rfi	1.46240		288.15	Vapor liquid equilibria in ternary systems of associating components (water, aniline, cyclohexylamine) and hydrocarbons (octane or toluene)	
rfi	1.44599		318.15	Experimental Determination of Densities and Refractive Indices of the Ternary Mixture 2-Methyl-2-propanol + Cyclohexylamine + n-Heptane at T = (303.15 to 323.15) K	
rfi	1.44856		313.15	Experimental Determination of Densities and Refractive Indices of the Ternary Mixture 2-Methyl-2-propanol + Cyclohexylamine + n-Heptane at T = (303.15 to 323.15) K	

rfi	1.45114	308.15	Experimental Determination of Densities and Refractive Indices of the Ternary Mixture 2-Methyl-2-propanol + Cyclohexylamine + n-Heptane at T = (303.15 to 323.15) K	
rfi	1.45375	303.15	Experimental Determination of Densities and Refractive Indices of the Ternary Mixture 2-Methyl-2-propanol + Cyclobexylamine	
			+ n-Heptane at T = (303.15 to 323.15) K	
rfi	1.46240	288.15	Ternary Liquid-Liquid(-Liquid) Equilibria of Aniline + Cyclohexylamine + Water, Aniline + Cyclohexylamine + Octane, Aniline + Water + Toluene, and Aniline + Water + Octane	
rfi	1.46240	288.15	Liquid-Liquid(-Liquid) Equilibria in Ternary Systems of Water + Cyclohexylamine + Aromatic Hydrocarbon (Toluene or Propylbenzene) or Aliphatic Hydrocarbon (Heptane or Octane)	
rfi	1.44336	323.15	Experimental Determination of Densities and Refractive Indices of the Ternary Mixture 2-Methyl-2-propanol + Cyclohexylamine + n-Heptane at T = (303.15 to 323.15) K	

rhol	862.31	kg/m3	298.15	Experimental and Computational Studies of Binary Mixtures of Isobutanol + Cyclohexylamine	
rhol	839.55	kg/m3	323.15	Experimental determination and modelling of densities and excess molar volumes of ternary system (1-butanol + cyclohexylamine + n-heptane) and corresponding binaries from 288.15 to 323.15K	
rhol	844.07	kg/m3	318.15	Experimental determination and modelling of densities and excess molar volumes of ternary system (1-butanol + cyclohexylamine + n-heptane) and corresponding binaries from 288.15 to 323.15K	
rhol	848.61	kg/m3	313.15	Experimental determination and modelling of densities and excess molar volumes of ternary system (1-butanol + cyclohexylamine + n-heptane) and corresponding binaries from 288.15 to 323.15K	
rhol	857.79	kg/m3	303.15	Experimental and Computational Studies of Binary Mixtures of Isobutanol + Cyclohexylamine	
rhol	853.24	kg/m3	308.15	Experimental and Computational Studies of Binary Mixtures of Isobutanol + Cyclohexylamine	

rhol	848.71	kg/m3	313.15	Experimental and Computational Studies of Binary Mixtures of Isobutanol + Cyclohexylamine	
rhol	853.14	kg/m3	308.15	Experimental determination and modelling of densities and excess molar volumes of ternary system (1-butanol + cyclohexylamine + n-heptane) and corresponding binaries from 288.15 to 323.15K	
rhol	857.67	kg/m3	303.15	Experimental determination and modelling of densities and excess molar volumes of ternary system (1-butanol + cyclohexylamine + n-heptane) and corresponding binaries from 288.15 to 323.15K	
rhol	862.69	kg/m3	298.15	Thermodynamics of mixtures with strongly negative deviations from Raoult s law. XII. Densities, viscosities and refractive indices at T = (293.15 to 303.15) K for (1-heptanol, or 1-decanol + cyclohexylamine) systems. Application of the ERAS model to (1-alkanol + cyclohexylamine) mixtures	

rhol	862.21	kg/m3	298.15	Experimental determination and modelling of densities and excess molar volumes of ternary system (1-butanol + cyclohexylamine + n-heptane) and corresponding binaries from 288.15 to 323.15K	
rhol	866.75	kg/m3	293.15	Experimental determination and modelling of densities and excess molar volumes of ternary system (1-butanol + cyclohexylamine + n-heptane) and corresponding binaries from 288.15 to 323.15K	
rhol	871.29	kg/m3	288.15	Experimental determination and modelling of densities and excess molar volumes of ternary system (1-butanol + cyclohexylamine + n-heptane) and corresponding binaries from 288.15 to 323.15K	
rhol	858.12	kg/m3	303.15	Thermodynamics of mixtures with strongly negative deviations from Raoult s law. XII. Densities, viscosities and refractive indices at T = (293.15 to 303.15) K for (1-heptanol, or 1-decanol + cyclohexylamine) systems. Application of the ERAS model to (1-alkanol + cyclohexylamine) mixtures	

rhol	867.20	kg/m3	293.15	Thermodynamics of mixtures with strongly negative deviations from Raoult s law. XII. Densities, viscosities and refractive indices at T = (293.15 to 303.15) K for (1-heptanol, or 1-decanol + cyclohexylamine) systems. Application of the ERAS model to (1-alkanol + cyclohexylamine) mixtures	
rhol	866.85	kg/m3	293.15	Experimental and Computational Studies of Binary Mixtures of Isobutanol + Cyclohexylamine	
speedsl	1360.60	m/s	313.15	Densities, Viscosities, Sound Speed, and IR Studies of N-methyl-2- pyrrolidone with Cyclohexylamine, Cyclohexanol, and Cyclohexene at different Temperatures.	
speedsl	1342.00	m/s	318.15	Densities, Viscosities, Sound Speed, and IR Studies of N-methyl-2- pyrrolidone with Cyclohexylamine, Cyclohexanol, and Cyclohexene at different Temperatures.	
speedsl	1379.20	m/s	308.15	Densities, Viscosities, Sound Speed, and IR Studies of N-methyl-2- pyrrolidone with Cyclohexylamine, Cyclohexanol, and Cyclohexene at different Temperatures.	

speedsl	1301.80	m/s	323.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1323.10	m/s	318.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1344.50	m/s	313.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1366.00	m/s	308.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1408.80	m/s	298.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	

speedsl	1430.50	m/s	293.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1397.80	m/s	303.15	Densities, Viscosities, Sound Speed, and IR Studies of N-methyl-2- pyrrolidone with Cyclohexylamine, Cyclohexanol, and Cyclohexene at different Temperatures.	
speedsl	1387.30	m/s	303.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	

Correlations

Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C^{*}ln(T) + D^{*}T^{2}$
Coeff. A	8.66698e+01
Coeff. B	-7.88954e+03
Coeff. C	-1.06327e+01
Coeff. D	7.33244e-06
Temperature range (K), min.	255.45
Temperature range (K), max.	615.00

Sources

https://www.doi.org/10.1021/je050520f

An equipment for dynamic measurements of vapour liquid aspeciality of competents in citally system aspeciality of competents invater, shill he and the contraction of the contract of

Joback Method:

Temperature Dependences of Limiting Activity Coefficients and Henry s Law Experimental Internetive Values of the Tealing With the State of the Tealing With the St Activity Coefficients and Henry s Law

Thermodynamics of mixtures with strongly negative deviations from Repering and the particular strong strong and strong and the particular strong and strong and the particular strong and support of the strong strong and the strong strong and strong strong strong and support strong s Component Cyclohexylamine, and Generating all organics and Some Alkenes, Amines, and Cyclic Introductionet the amine group at cycloaliphatic hydrocarbon (c-CHNH2) The the conversion of the conv

Experimental determination and modelling of densities and excess molar volumes of ternary system (1-butanol + cyclohexylamine + n-heptane) and corresponding binaries

https://www.doi.org/10.1016/j.fluid.2005.05.003 Kating a difference of the second of the sec https://www.chemeo.com/doc/models/crippen_log10ws http://webbook.nist.gov/cgi/cbook.cgi?ID=C108918&Units=SI https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1021/je060136y https://www.doi.org/10.1021/je100484n https://www.doi.org/10.1016/j.jct.2011.04.017 https://www.doi.org/10.1016/j.fluid.2016.12.001 https://www.doi.org/10.1016/j.tca.2014.06.026 https://www.doi.org/10.1016/j.fluid.2007.07.023 https://www.cheric.org/files/research/kdb/mol/mol1326.mol https://www.doi.org/10.1016/j.jct.2014.09.005 https://www.doi.org/10.1016/j.jct.2011.08.009 https://www.doi.org/10.1016/j.tca.2015.03.016 https://www.doi.org/10.1021/je050316s https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1326 https://www.doi.org/10.1021/acs.jced.7b00721 http://pubs.acs.org/doi/abs/10.1021/ci990307I https://www.doi.org/10.1021/je0341357 https://www.doi.org/10.1016/j.fluid.2011.09.010 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1326 https://www.doi.org/10.1021/acs.jced.7b00100 https://www.doi.org/10.1016/j.tca.2012.08.011 https://www.doi.org/10.1021/je900240s https://www.doi.org/10.1021/acs.jced.6b00158 http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1016/j.tca.2009.07.002

affp:	Proton affinity
basg:	Gas basicity
chl:	Standard liquid enthalpy of combustion
cpg:	Ideal gas heat capacity
gf:	Standard Gibbs free energy of formation
hf:	Enthalpy of formation at standard conditions
hfl:	Liquid phase enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions

Enthalpy of fusion at a given temperature
Enthalpy of vaporization at standard conditions
Enthalpy of vaporization at a given temperature
Ionization energy
Log10 of Water solubility in mol/l
Octanol/Water partition coefficient
McGowan's characteristic volume
Critical Pressure
Vapor pressure
Refractive Index
Liquid Density
Non-polar retention indices
Polar retention indices
Speed of sound in fluid
Normal Boiling Point Temperature
Critical Temperature
Normal melting (fusion) point
Critical Volume

Latest version available from:

https://www.chemeo.com/cid/46-311-5/Cyclohexylamine.pdf

Generated by Cheméo on 2024-05-03 11:28:51.967053969 +0000 UTC m=+17024980.887631284.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.