Cycloheptane

Inchi:InChI=1S/C7H14/c1-2-4-6-7-5-3-1/h1-7H2InchiKey:DMEGYFMYUHOHGS-UHFFFAOYSA-N

Formula: C7H14

SMILES: C1CCCCC1

Mol. weight [g/mol]: 98.19 **CAS:** 291-64-5

Physical Properties

Property code	Value	Unit	Source
af	0.2370		KDB
chl	-4597.60 ± 0.60	kJ/mol	NIST Webbook
chl	-4598.90 ± 1.70	kJ/mol	NIST Webbook
chl	-4586.50	kJ/mol	NIST Webbook
chl	-4597.00 ± 0.80	kJ/mol	NIST Webbook
gf	63.05	kJ/mol	KDB
hcg	4597.80	kJ/mol	KDB
hcn	4289.856	kJ/mol	KDB
hf	-119.40	kJ/mol	KDB
hfl	-156.40 ± 1.70	kJ/mol	NIST Webbook
hfus	2.55	kJ/mol	Joback Method
hvap	38.50 ± 0.20	kJ/mol	NIST Webbook
hvap	39.40	kJ/mol	NIST Webbook
hvap	38.50	kJ/mol	NIST Webbook
hvap	38.50 ± 2.10	kJ/mol	NIST Webbook
hvap	37.00	kJ/mol	NIST Webbook
ie	9.97	eV	NIST Webbook
ie	9.96	eV	NIST Webbook
ie	9.82 ± 0.05	eV	NIST Webbook
ie	9.90 ± 0.10	eV	NIST Webbook
ie	9.88 ± 0.05	eV	NIST Webbook
log10ws	-3.51		Estimated Solubility Method
log10ws	-3.52		Aqueous Solubility Prediction Method
logp	2.731		Crippen Method
mcvol	98.630	ml/mol	McGowan Method
рс	3820.00	kPa	KDB
рс	3820.00 ± 40.00	kPa	NIST Webbook

	2012.00 - 50.00	I/Da	NICT Walter 1
pc	3813.00 ± 50.00 3826.00 ± 40.53	kPa kPa	NIST Webbook NIST Webbook
pc rhoc	3826.00 ± 40.53 277.87 ± 3.93		NIST Webbook
		kg/m3	
rinpol	786.00		NIST Webbook
rinpol	815.00		NIST Webbook
rinpol	811.60		NIST Webbook
rinpol	791.00		NIST Webbook
rinpol	804.00		NIST Webbook
rinpol	811.00		NIST Webbook
rinpol	829.00		NIST Webbook
rinpol	807.00		NIST Webbook
rinpol	803.00		NIST Webbook
rinpol	784.00		NIST Webbook
rinpol	812.00		NIST Webbook
rinpol	789.00		NIST Webbook
rinpol	795.00		NIST Webbook
rinpol	800.00		NIST Webbook
rinpol	806.00		NIST Webbook
rinpol	816.00		NIST Webbook
rinpol	804.00		NIST Webbook
rinpol	824.00		NIST Webbook
rinpol	819.00		NIST Webbook
rinpol	787.00		NIST Webbook
rinpol	794.00		NIST Webbook
rinpol	786.00		NIST Webbook
rinpol	796.00		NIST Webbook
rinpol	796.00		NIST Webbook
rinpol	796.00		NIST Webbook
rinpol	790.00		NIST Webbook
rinpol	800.00		NIST Webbook
rinpol	846.00	NIST Webbook	
rinpol	803.00	NIST Webbook	
rinpol	797.00		NIST Webbook
rinpol	807.00		NIST Webbook
rinpol	800.00		NIST Webbook
rinpol	800.00		NIST Webbook
rinpol	787.00		NIST Webbook
rinpol	837.50		NIST Webbook
rinpol	806.90		NIST Webbook
rinpol	789.00		NIST Webbook
rinpol	811.00		NIST Webbook
rinpol	812.00		NIST Webbook
rinpol	816.00		NIST Webbook
rinpol	800.00		NIST Webbook
Піроі	000.00		THO! WODDOOK

rinnol	819.00		NIST Webbook
rinpol rinpol	788.00		NIST Webbook
rinpol	786.00		NIST Webbook
rinpol	800.00		NIST Webbook
rinpol	819.00		NIST Webbook
rinpol	806.90		NIST Webbook
rinpol	800.00		NIST Webbook
rinpol	794.20		NIST Webbook
	837.00		NIST Webbook
rinpol	836.00		NIST Webbook
rinpol	837.50		NIST Webbook
rinpol			NIST Webbook
rinpol	796.00 789.00		NIST Webbook
rinpol			
ripol	878.00		NIST Webbook
ripol	899.00		NIST Webbook
ripol	883.00		NIST Webbook
ripol	883.00		NIST Webbook
ripol	899.00		NIST Webbook
ripol	892.00	1/ 1 1/	NIST Webbook
sg	342.30 ± 1.30	J/mol×K	NIST Webbook
sl	242.55	J/mol×K	NIST Webbook
tb	392.15 ± 2.00	K	NIST Webbook
tb	391.25 ± 0.60	K	NIST Webbook
tb	391.63	K	KDB
tb	391.70	K	NIST Webbook
tb	393.00 ± 2.00	K	NIST Webbook
tb	391.63 ± 0.30	K	NIST Webbook
tb	391.99 ± 0.30	K	NIST Webbook
tb	391.99 ± 0.30	K	NIST Webbook
tb	391.99 ± 0.20	K	NIST Webbook
tc	604.20	K	KDB
tc	604.20 ± 0.50	K	NIST Webbook
tc	604.20 ± 0.50	K	NIST Webbook
tf	265.12	K	KDB
tt	265.00 ± 0.07	K	NIST Webbook
tt	265.12 ± 0.05	K	NIST Webbook
tt	265.10 ± 3.00	K	NIST Webbook
VC	0.353	m3/kmol	KDB
VC	0.354 ± 0.007	m3/kmol	NIST Webbook
VC	0.353	m3/kmol	NIST Webbook
ZC	0.2684240		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	187.82	J/mol×K	423.39	Joback Method
cpg	170.69	J/mol×K	388.05	Joback Method
cpg	260.93	J/mol×K	600.09	Joback Method
cpg	247.91	J/mol×K	564.75	Joback Method
cpg	234.11	J/mol×K	529.41	Joback Method
cpg	219.50	J/mol×K	494.07	Joback Method
cpg	204.08	J/mol×K	458.73	Joback Method
cpl	180.75	J/mol×K	298.15	NIST Webbook
cpl	180.47	J/mol×K	298.15	NIST Webbook
cpl	180.61	J/mol×K	298.15	NIST Webbook
dvisc	0.0332403	Paxs	176.75	Joback Method
dvisc	0.0006718	Paxs	317.62	Joback Method
dvisc	0.0012369	Pa×s	282.40	Joback Method
dvisc	0.0027104	Paxs	247.18	Joback Method
dvisc	0.0004121	Pa×s	352.83	Joback Method
dvisc	0.0077075	Pa×s	211.97	Joback Method
dvisc	0.0002763	Paxs	388.05	Joback Method
hfust	0.29	kJ/mol	198.20	NIST Webbook
hfust	4.98	kJ/mol	134.80	NIST Webbook
hfust	1.88	kJ/mol	265.10	NIST Webbook
hfust	0.45	kJ/mol	212.40	NIST Webbook
hfust	1.88	kJ/mol	265.10	NIST Webbook
hsubt	53.50	kJ/mol	134.00	NIST Webbook
hvapt	36.40	kJ/mol	365.50	NIST Webbook
hvapt	31.70	kJ/mol	540.00	NIST Webbook
hvapt	36.10	kJ/mol	387.00	NIST Webbook
hvapt	38.60	kJ/mol	307.50	NIST Webbook
rfi	1.44240		298.15	KDB
rhol	810.00	kg/m3	293.00	KDB
sfust	7.10	J/mol×K	265.10	NIST Webbook
sfust	2.11	J/mol×K	212.40	NIST Webbook
sfust	1.46	J/mol×K	198.20	NIST Webbook
sfust	36.94	J/mol×K	134.80	NIST Webbook
srf	0.03	N/m	298.20	KDB

tcondl	0.11	W/m×K	320.05	Thermal
toondi	0.11	WIIIAX	320.00	Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.12	W/m×K	297.01	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.12	W/m×K	280.48	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.12	W/m×K	280.17	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.13	W/m×K	262.50	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons

tcondl	0.13	W/m×K	262.37	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.13	W/m×K	262.18	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	297.20	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	297.33	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.11	W/m×K	320.23	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	

tcondl	0.11	W/m×K	320.36	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	280.35	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.41291e+01
Coeff. B	-3.26491e+03
Coeff. C	-4.86550e+01
Temperature range (K), min.	265.12
Temperature range (K), max.	418.93

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	8.37466e+01
Coeff. B	-7.38221e+03
Coeff. C	-1.02752e+01
Coeff. D	6.91167e-06
Temperature range (K), min.	265.12
Temperature range (K), max.	604.30

Sources

323.15, and 333.15) K:

https://www.doi.org/10.1016/j.jct.2016.07.017 Separation of aliphatic from aromatic hydrocarbons and sulphur compounds https://www.doi.org/10.1016/j.jct.2013.01.007 and why significant statements of the statements of the statements of the statement of the https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1021/acs.jced.8b00600 **Astialtyopgestinients at i Brioite**d Lution https://www.doi.org/10.1016/j.jct.2009.08.012 105 splusee in the Europe Eutectic Solvent: https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=478 bis(trifluoromethylsulfonyl)imide ionic liquid using gas liquid http://webbook.nist.gov/cgi/cbook.cgi?ID=C291645&Units=SI Activity Coefficients at Infinite Dilution https://www.doi.org/10.1021/je200195q of Organic Compounds in Four New That #20 สมาชาย เลย เป็นการ เกษาใคร ยาลา https://www.doi.org/10.1016/j.jct.2018.02.014 interaction-selectivity in separation problems of the properties of the properties for an arministrativity of the properties for one of the properties in the properties of the properties in the properties of the properties https://www.doi.org/10.1016/j.jct.2012.05.017 https://www.doi.org/10.1016/j.jct.2012.05.017
https://www.doi.org/10.1016/j.jct.2012.05.017
https://www.doi.org/10.1016/j.jct.2016.06.028
https://www.doi.org/10.1016/j.jct.2016.06.028
https://www.doi.org/10.1016/j.jct.2016.06.028
https://www.doi.org/10.1016/j.jct.2016.06.028
https://www.doi.org/10.1016/j.jct.2016.06.028
https://www.doi.org/10.1016/j.jct.2018.01.004
https://www.doi.org/10.1016/j.jct.2018.01.004
https://www.doi.org/10.1016/j.jct.2013.01.005
https://www.doi.org/10.1016/j.jct.2013.01.005
https://www.doi.org/10.1016/j.jct.2013.01.005
https://www.doi.org/10.1016/j.jct.2013.01.005
https://www.doi.org/10.1016/j.jct.2013.01.005
https://www.doi.org/10.1016/j.jct.2013.01.005
https://www.doi.org/10.1016/j.jct.2017.03.004
https://www.doi.org/10.1016/j.jct.2013.05.008
https://www.doi.org/10.1016/j.jct.2013.05.008
https://www.doi.org/10.1016/j.jct.2013.05.008
https://www.doi.org/10.1016/j.jct.2013.05.008
https://www.doi.org/10.1016/j.jct.2013.05.008
https://www.doi.org/10.1016/j.jct.2013.00.005
https://www.doi.org/10.1016/j.jct.2013.05.008
https://www.doi.org/10.1016/j.jct.2013.00.005
https://www.doi.org/10.1016/j.jct.2013.00.005
https://www.doi.org/10.1016/j.jct.2013.00.005
https://www.doi.org/10.1016/j.jct.2013.00.005
https://www.doi.org/10.1016/j.jct.2013.00.005
https://www.doi.org/10.1016/j.jct.2013.00.005
https://www.doi.org/10.1016/j.jct.2013.00.006
https://www.doi.org/10.1016/j.jct.2013.00.006
https://www.doi.org/10.1016/j.jct.2013.00.006
https://www.doi.org/10 https://www.doi.org/10.1016/j.jct.2016.06.028 (4-sulfobutyl)-3-methylimidazolium กระบบ งากอยู่ให้เอเนิร at Infinite Dilution of Organic Compounds in Agiพง รุงอย์แจ่งพระสะเทียกเร dilution https://www.doi.org/10.1021/je800658v https://www.doi.org/10.1016/j.jct.2015.02.023 ABUNIT SOMEWOOM REAL OF UNITED HOUSE GAS THE METER WEST OF THE PROPERTY OF THE https://www.doi.org/10.1016/j.jct.2010.05.017 https://www.doi.org/10.1016/j.jct.2009.07.010 https://www.doi.org/10.1016/j.fluid.2018.07.028

```
Measurements of activity coefficients at infinite dilution of aliphatic and begins we high endocates systems of the property o
         Measurements of activity coefficients
                                                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.jct.2008.12.018
                                                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.fluid.2006.07.015
                                                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.fluid.2018.06.003
                                                                                                                                                                                                                                                                                                                                http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt
                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.fluid.2018.09.024
                                                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.fluid.2014.11.020
                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.fluid.2006.03.002
   https://www.doi.org/10.1016/j.jct.2005.07.003
Intiplities distribute coefficients at Intiplities distribute coefficients at Intiplities distribute coefficients and Chicagological Control of Color of Co
          hexyl-3-methyl-imidazolium
```

bis(trifluoromethylsulfonyl)-imide using g.l.c. at T = (298.15, 313.15, and 333.15) K:

Gas liquid chromatography https://www.doi.org/10.1016/j.jct.2010.01.004 measurements of activity coefficients https://www.doi.org/10.1016/j.jct.2013.02.004 Measuricementsion activition exfiguents ation with the second s https://www.doi.org/10.1021/je900838a https://www.doi.org/10.1016/j.fluid.2009.08.017 Activity Operficients at Infinite Dilution
of Oxordic Scients Infin https://www.doi.org/10.1021/je0256481 https://www.cheric.org/files/research/kdb/mol/mol478.mol https://www.doi.org/10.1016/j.fluid.2005.04.021 https://www.doi.org/10.1016/j.fluid.2009.01.011 plear in utronnensy islumony i) imide, listuty (1. spetaylay (1. plishiatugraphy at T lithur in the plant of the control of th https://www.doi.org/10.1016/j.fluid.2014.03.020 https://www.sciencedirect.com/book/9780128029992/the-vaws-handbook-of-vapor-pressure Ryessumebons: Phase Equilibria of https://www.doi.org/10.1021/je900460m (1-Hexyl-3-methylimidazolium ក្រុសប្រភព្វិស្ត្រស្នាញ់ ស្នាប់ប្រាស់ https://www.doi.org/10.1021/acs.jced.5b00980 The developing and Westersin
The developing a

http://link.springer.com/article/10.1007/BF02311772 trihexyltetradecylphosphonium-bis-(2,4,4-trimethylpentyl)-

phosphinate using g.l.c. at T = (303.15, 308.15, 313.15, and 318.15) K:

Legend

Acentric Factor af:

Standard liquid enthalpy of combustion chl:

cpg: Ideal gas heat capacity Liquid phase heat capacity cpl:

dvisc: Dynamic viscosity

Standard Gibbs free energy of formation gf:

hcg: Heat of Combustion, Gross form hcn: Heat of Combustion, Net Form

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hsubt: Enthalpy of sublimation at a given temperature hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressurerfi: Refractive Indexrhoc: Critical densityrhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature **sg:** Molar entropy at standard conditions

sl: Liquid phase molar entropy at standard conditions

srf: Surface Tension

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tcondl: Liquid thermal conductivitytf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility

Latest version available from:

https://www.chemeo.com/cid/41-270-6/Cycloheptane.pdf

Generated by Cheméo on 2025-12-20 11:08:47.04985089 +0000 UTC m=+5977124.579891545.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.