tin

Inchi:	InChI=1S/Sn
InchiKey:	ATJFFYVFTNAWJD-UHFFFAOYSA-N
Formula:	Sn
SMILES:	[Sn]
Mol. weight [g/mol]:	118.71
CAS:	7440-31-5

Physical Properties

Property code	Value	Unit	Source
ea	1.11	eV	NIST Webbook
ea	1.11 ± 0.02	eV	NIST Webbook
ea	1.15 ± 0.15	eV	NIST Webbook
ea	1.11 ± 0.00	eV	NIST Webbook
hf	301.20 ± 1.50	kJ/mol	NIST Webbook
hfus	7.13	kJ/mol	Odd even effect in melting properties of 12 alkane-a,x-diamides
ie	7.34 ± 0.00	eV	NIST Webbook
ie	7.87	eV	NIST Webbook
ie	7.40 ± 0.30	eV	NIST Webbook
ie	7.34	eV	NIST Webbook
ie	7.34	eV	NIST Webbook
ie	7.30 ± 0.20	eV	NIST Webbook
ie	7.28 ± 0.07	eV	NIST Webbook
ie	7.34	eV	NIST Webbook
sgb	168.49 ± 0.00	J/mol×K	NIST Webbook
SS	51.18 ± 0.08	J/mol×K	NIST Webbook
tf	504.87 ± 0.30	К	NIST Webbook
tf	505.11 ± 0.00	К	NIST Webbook
tf	505.15 ± 1.00	К	NIST Webbook

Temperature Dependent Properties

Property code

dvisc	0.0012530	Paxs	873.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
dvisc	0.0011420	Paxs	973.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
dvisc	0.0010870	Paxs	1073.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
speedsl	2470.00	m/s	608.00	Temperature Dependence of the Velocity of Sound in Liquid Metals of Group XIV	
speedsl	2408.00	m/s	804.00	Temperature Dependence of the Velocity of Sound in Liquid Metals of Group XIV	
speedsl	2416.00	m/s	814.00	Temperature Dependence of the Velocity of Sound in Liquid Metals of Group XIV	
speedsl	2379.00	m/s	919.00	Temperature Dependence of the Velocity of Sound in Liquid Metals of Group XIV	
speedsl	2366.00	m/s	1012.00	Temperature Dependence of the Velocity of Sound in Liquid Metals of Group XIV	
speedsl	2332.00	m/s	1025.00	Temperature Dependence of the Velocity of Sound in Liquid Metals of Group XIV	

speedsl	2306.00	m/s	1218.00	Temperature Dependence of the Velocity of Sound in Liquid Metals of Group XIV	
speedsl	2234.00	m/s	1453.00	Temperature Dependence of the Velocity of Sound in Liquid Metals of Group XIV	
speedsl	2242.00	m/s	1463.00	Temperature Dependence of the Velocity of Sound in Liquid Metals of Group XIV	
tcondl	33.00	W/m×K	603.20	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	32.00	W/m×K	571.20	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	30.70	W/m×K	534.30	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	33.50	W/m×K	630.00	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	34.30	W/m×K	678.20	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	

tcondl	34.50	W/m×K	703.00	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	35.00	W/m×K	730.20	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	27.30	W/m×K	523.10	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	
tcondl	28.00	W/m×K	549.20	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	
tcondl	28.60	W/m×K	580.00	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	
tcondl	29.10	W/m×K	603.70	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	

tcondl	30.00	W/m×K	634.90	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	
tcondl	30.60	W/m×K	657.00	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	
tcondl	31.40	W/m×K	683.80	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	
tcondl	31.90	W/m×K	707.60	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	
tcondl	32.50	W/m×K	733.20	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	

Sources

Enthalpies of mixing of liquid systems mixing of Ag-Ga-Sn liquid alloys: Thermochemistry of Liquid Ni-Sb-Sn Alloys: Vaporization thermodynamics of the ZnO-SnO2 system: Enthalpies of Mixing of Liquid In-Sn and In-Sn-Zn Alloys: Enthalpy of mixing of liquid systems ternary In Zn Sn alloys by EMFmethod: A Novel Instrument for the Measurement of the Thermal ଧର୍ମେଧି ଅନ୍ନେମ୍ପର୍ବ୍ୟ Molten Metals. Part II: Measurements: Repeatability and Refinement of a Transient Hot-wire Instrument for Measuradyname Therman Dound uct (Gray-of Biole transfer More Melts: Thermophysical properties of Ga-Zn eutectic alloys with Sn additions: Thermal conductivities of solid and liquid phases for pure Al, pure Sn and Tharmal a onductivities of solid and liquid phases in Pb Cd and Sn Zn Bharmentweires froggerties of the Liquid Ga-In-Sn Eutectic Alloy: Thormodynamic properties of liquid Thermodynamic properties of liquid Au-Cu-Sn alloys determined from electromative force measurements: conductivity variation with temporature roicsn approverses of based (astiment contained to the state transformed to the state of the state transformed to the state of the state the state of the state of the state of the state the state of the state of the state of the state the state of the state of the state of the state the state of the state of the state of the state of the state the state of t tineantimony system in vacuum distillation: Experimental investigation

https://www.doi.org/10.1016/j.tca.2010.10.010

 For lead free soldering: Cu-Sb-Sn

 Optime effect in melting properties of https://www.doi.org/10.1016/j.jct.2006.04.004

 12 alkane-a,x-diamides:

 Partial and Integral Enthalpies of

 https://www.doi.org/10.1016/j.tca.2011.04.032

https://www.doi.org/10.1016/j.tca.2011.04.032 https://www.doi.org/10.1016/j.tca.2012.02.024 https://www.doi.org/10.1016/j.jct.2013.11.010 https://www.doi.org/10.1016/j.tca.2010.02.008 https://www.doi.org/10.1016/j.tca.2012.01.024 for lead free soldering: The Ni-Sb-Sn syseum enthalpy of mixing of the liquid https://www.doi.org/10.1016/j.tca.2008.01.014 ternary Au Cu Sn system: Enthalpies of mixing of liquid Bi Cu and https://www.doi.org/10.1016/j.tca.2008.02.023 Bi Cu Sn alloys relevant for lead-free Achtered y brating Finger Viscometer for High-Temperature Measurements in Tharra anti-sical propeyties of the liquid Ga-Sn-Zn eutectic alloy: Measurement of zinc activity in the Measuremen https://www.doi.org/10.1007/s10765-016-2104-7 https://www.doi.org/10.1007/s10765-006-0057-y http://webbook.nist.gov/cgi/cbook.cgi?ID=C7440315&Units=SI https://www.doi.org/10.1007/s10765-006-0124-4 https://www.doi.org/10.1016/j.jct.2015.09.023 https://www.doi.org/10.1016/j.fluid.2018.07.008 https://www.doi.org/10.1016/j.fluid.2010.07.015 https://www.doi.org/10.1016/j.tca.2007.01.009 https://www.doi.org/10.1021/je400882q https://www.doi.org/10.1016/j.tca.2011.08.011 https://www.doi.org/10.1016/j.tca.2012.12.012 https://www.doi.org/10.1016/j.jct.2015.01.010 https://www.doi.org/10.1007/s10765-007-0151-9 https://www.doi.org/10.1016/j.fluid.2016.02.012

Legend

and calculation:

dvisc:	Dynamic viscosity
ea:	Electron affinity
hf:	Enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions
ie:	Ionization energy
sgb:	Molar entropy at standard conditions (1 bar)
speedsl:	Speed of sound in fluid
SS:	Solid phase molar entropy at standard conditions
tcondl:	Liquid thermal conductivity
tf:	Normal melting (fusion) point

Latest version available from:

https://www.chemeo.com/cid/38-081-0/tin.pdf

Generated by Cheméo on 2024-05-02 05:16:51.836698673 +0000 UTC m=+16916260.757275989.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.