Formamide, N,N-dimethyl-

Other names: DMF

DMF (amide)

DMF (dimethylformamide)

DMFA

Dimethylamid kyseliny mravenci

Dimethylforamide
Dimethylformamid
Dimethylformamide
Dimetilformamide
Dimetylformamidu
Dwumetyloformamid
Formyldimethylamine

HCON(CH3)2

N,N-Dimethylformaldehyde N,N-Dimethylformamide N,N-Dimethylmethanamide N-FORMYLDIMETHYLAMINE

NCI-C60913 NSC-5356 U-4224 UN 2265

dimethylformamide (DMF)

Inchi: InChI=1S/C3H7NO/c1-4(2)3-5/h3H,1-2H3
InchiKey: ZMXDDKWLCZADIW-UHFFFAOYSA-N

Formula: C3H7NO SMILES: CN(C)C=O

Mol. weight [g/mol]: 73.09 CAS: 68-12-2

Physical Properties

Property code	Value	Unit	Source
affp	887.50	kJ/mol	NIST Webbook
basg	856.60	kJ/mol	NIST Webbook
chl	-1941.90	kJ/mol	NIST Webbook
chl	-1941.60 ± 1.20	kJ/mol	NIST Webbook

dvisc	0.0008610	Pa×s N-N'bis(2	Thermodynamic properties of ionic liquid, 1-hexyl-3-methylimidazolum bromide, + 2-pyridylmethylidene)-1,2-diiminoetha Schiff base + N,N- dimethylformamide solutions at T = (298.15 to 313.15) K
dvisc	0.0008050	Paxs	Thermodynamic Properties of Salophen Schiff Base + Ionic Liquid ([CnmIm][Br]) + Dimethylformamide Ternary Mixtures at 298.15 K
ea	0.01	eV	NIST Webbook
gf	-14.36	kJ/mol	Joback Method
hf	-123.30	kJ/mol	Joback Method
hfl	-239.40 ± 1.20	kJ/mol	NIST Webbook
hfl	-239.00	kJ/mol	NIST Webbook
hfus	8.95	kJ/mol	Thermodynamic properties of N,N-dimethylformamide and N,N-dimethylacetamide
hfus	46.65	kJ/mol	Enthalpies of vaporization of N,N-dialkyl monamides at 298.15K
hvap	47.57	kJ/mol	NIST Webbook
hvap	46.70 ± 0.50	kJ/mol	NIST Webbook
hvap	46.90	kJ/mol	NIST Webbook
ie	9.25	eV	NIST Webbook
ie	9.14	eV	NIST Webbook
ie	9.12 ± 0.02	eV	NIST Webbook
ie	9.14	eV	NIST Webbook
ie	9.13	eV	NIST Webbook
ie	9.45 ± 0.05	eV	NIST Webbook
log10ws	0.58		Crippen Method
logp	-0.296		Crippen Method
mcvol	64.680	ml/mol	McGowan Method
nfpaf	%!d(float64=2)		KDB
nfpah	%!d(float64=1)		KDB
рс	4862.97	kPa	Joback Method
rhoc	279.22 ± 5.85	kg/m3	NIST Webbook
rinpol	746.00		NIST Webbook
rinpol	746.00		NIST Webbook
rinpol	738.00		NIST Webbook
rinpol	735.00		NIST Webbook
rinpol	746.00		NIST Webbook
rinpol	751.00		NIST Webbook
rinpol	782.00		NIST Webbook

783.00 772.00 790.00 782.00 742.00 745.00 750.00 747.00 756.30 752.00 752.00 753.00 772.00 1276.00 1290.00 1344.00 1327.00 1312.00 1325.00		NIST Webbook
790.00 782.00 742.00 745.00 750.00 750.00 756.30 752.00 752.00 753.00 772.00 1276.00 1290.00 1344.00 1327.00 1312.00 1325.00 1295.00		NIST Webbook
782.00 742.00 745.00 750.00 750.00 750.00 756.30 752.00 752.00 753.00 772.00 1276.00 1276.00 1290.00 1344.00 1327.00 1312.00 1325.00 1295.00		NIST Webbook
742.00 745.00 750.00 750.00 747.00 756.30 752.00 752.00 753.00 772.00 1276.00 1290.00 1344.00 1327.00 1312.00 1325.00 1295.00		NIST Webbook
745.00 750.00 747.00 756.30 752.00 752.00 753.00 772.00 1276.00 1276.00 1290.00 1344.00 1327.00 1312.00 1325.00 1295.00		NIST Webbook
750.00 747.00 756.30 752.00 752.00 753.00 772.00 1276.00 1290.00 1344.00 1327.00 1312.00 1325.00 1295.00		NIST Webbook
747.00 756.30 752.00 752.00 753.00 772.00 1276.00 1290.00 1344.00 1327.00 1312.00 1325.00 1295.00		NIST Webbook
756.30 752.00 752.00 753.00 772.00 1276.00 1276.00 1290.00 1344.00 1327.00 1312.00 1325.00 1295.00		NIST Webbook
752.00 752.00 753.00 772.00 1276.00 1276.00 1290.00 1344.00 1327.00 1312.00 1325.00 1295.00		NIST Webbook
752.00 753.00 772.00 1276.00 1276.00 1290.00 1344.00 1327.00 1312.00 1325.00 1295.00		NIST Webbook
753.00 772.00 1276.00 1276.00 1290.00 1344.00 1327.00 1312.00 1325.00 1295.00		NIST Webbook
772.00 1276.00 1276.00 1290.00 1344.00 1327.00 1312.00 1325.00 1295.00		NIST Webbook
1276.00 1276.00 1290.00 1344.00 1327.00 1312.00 1325.00 1295.00		NIST Webbook
1276.00 1290.00 1344.00 1327.00 1312.00 1325.00 1295.00		NIST Webbook NIST Webbook NIST Webbook NIST Webbook NIST Webbook NIST Webbook
1290.00 1344.00 1327.00 1312.00 1325.00 1295.00		NIST Webbook NIST Webbook NIST Webbook NIST Webbook NIST Webbook
1344.00 1327.00 1312.00 1325.00 1295.00		NIST Webbook NIST Webbook NIST Webbook NIST Webbook
1327.00 1312.00 1325.00 1295.00		NIST Webbook NIST Webbook NIST Webbook
1312.00 1325.00 1295.00		NIST Webbook NIST Webbook
1325.00 1295.00		NIST Webbook
1295.00		
		NIST Webbook
1361.00		NIST Webbook
1361.00		NIST Webbook
1282.00		NIST Webbook
1319.00		NIST Webbook
1328.00		NIST Webbook
1333.00		NIST Webbook
1326.00		NIST Webbook
1304.00		NIST Webbook
1326.00		NIST Webbook
1344.00		NIST Webbook
428.15 ± 2.00	K	NIST Webbook
425.70	K	Vapor liquid equilibria for water + acetic acid + (N,N-dimethylformamide or dimethyl sulfoxide) at 13.33 kPa
426.05	K	Separation of azeotropic mixture (2, 2, 3, 3-Tetrafluoro-1-propanol + water) by extractive distillation: Entrainers selection and vapour-liquid

tb	425.15	К	Vapor Liquid Equilibrium Data for Methanol + tert-Butylamine + N,N-Dimethylformamide and Constituent Binary Systems at Atmospheric Pressure
tb	426.21	К	Isobaric Vapor Liquid Equilibria for the Binary and Ternary Systems of 2-Methyl-1-butanol, 2-Methyl-butanol Acetate, and Dimethylformamide (DMF) at 101.3 kPa
tb	426.00 ± 1.00	K	NIST Webbook
tb	426.20	K	NIST Webbook
tb	425.95 ± 0.70	K	NIST Webbook
tb	426.05 ± 0.30	K	NIST Webbook
tb	425.95 ± 0.50	K	NIST Webbook
tb	425.85 ± 0.25	K	NIST Webbook
tb	426.00 ± 3.00	K	NIST Webbook
tb	426.00	K	KDB
tc	649.60	K	KDB
tc	649.60 ± 0.60	K	NIST Webbook
tf	212.72	K	KDB
tf	212.70 ± 0.02	K	NIST Webbook
VC	0.262	m3/kmol	KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	110.79	J/mol×K	357.75	Joback Method	
cpg	103.92	J/mol×K	329.14	Joback Method	
cpg	140.87	J/mol×K	500.82	Joback Method	
cpg	135.39	J/mol×K	472.20	Joback Method	
cpg	129.66	J/mol×K	443.59	Joback Method	
cpg	123.65	J/mol×K	414.98	Joback Method	
cpg	117.36	J/mol×K	386.37	Joback Method	
cpl	150.80	J/mol×K	298.15	NIST Webbook	
cpl	146.00	J/mol×K	298.15	NIST Webbook	
cpl	156.69	J/mol×K	298.00	NIST Webbook	
cpl	152.00	J/mol×K	298.15	NIST Webbook	· ·
cpl	146.05	J/mol×K	298.15	NIST Webbook	
cpl	148.16	J/mol×K	298.15	NIST Webbook	· ·
cpl	149.28	J/mol×K	308.00	NIST Webbook	

cpl	150.00	J/mol×K	298.15	NIST Webbook	
cpl	148.36	J/mol×K	298.15	NIST Webbook	
cpl	150.50	J/mol×K	298.15	NIST Webbook	
cpl	150.80	J/mol×K	298.15	NIST Webbook	
cpl	120.50	J/mol×K	298.00	NIST Webbook	
cpl	148.00	J/mol×K	298.15	NIST Webbook	
cpl	148.00	J/mol×K	298.00	NIST Webbook	
dvisc	0.0007600	Paxs	303.15	Volumetric Properties and Viscosities of Binary Mixtures of N,N-Dimethylformamic	de
				with Methanol and Ethanol in the Temperature Range (293.15 to 333.15) K	
dvisc	0.0008030	Paxs	298.15	Densities, Viscosities, and Thermodynamic Properties of (N,N-Dimethylformami + Benzene + Chlorobenzene) Ternary Mixtures at (298.15, 303.15, 308.15, and 313.15) K	de
dvisc	0.0005020	Pa×s	343.15	Densities and Viscosities of N,N-Dimethylformamic + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to 353.15) K	de
dvisc	0.0004600	Paxs	353.15	Densities and Viscosities of N,N-Dimethylformamic + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to 353.15) K	de
dvisc	0.0007590	Paxs	303.15	Densities and Viscosities of N,N-Dimethylformamic + N-Methyl-2-pyrrolidino and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K	

dvisc	0.0006780	Paxs	313.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0006080	Paxs	323.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0005520	Paxs	333.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0005010	Paxs	343.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0004590	Paxs	353.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0007103	Paxs	308.15	Electrical Conductances of Tetrabutylammonium Bromide, Sodium Tetraphenylborate, and Sodium Bromide in N,N-Dimethylformamide at (308.15, 313.15, 318.15, and 323.15) K

dvisc 0.0005520						
Viscosities of N.N.Dimethylformamide + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to 353.15) K		dvisc	0.0005520	Paxs	333.15	Viscosities of N,N-Dimethylformamide + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to
Viscosities of N,N-Dimethylformamide		dvisc	0.0006080	Paxs	323.15	Viscosities of N,N-Dimethylformamide + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to
Viscosities of N,N-Dimethylformamide + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to 353.15) K		dvisc	0.0006750	Paxs	313.15	Viscosities of N,N-Dimethylformamide + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to
Viscosities of (N,N-Dimethylformamide + Water) at Atmospheric Pressure from (283.15 to 353.15) K dvisc 0.0005100 Paxs 343.15 Densities and Viscosities of (N,N-Dimethylformamide + Water) at Atmospheric Pressure from (283.15 to 353.15) K dvisc 0.0005590 Paxs 333.15 Densities and Viscosities of (N,N-Dimethylformamide + Water) at Atmospheric Pressure from (283.15 to 353.15) Figure 1 (N,N-Dimethylformamide) + Water) at Atmospheric Pressure from (283.15 to		dvisc	0.0007600	Pa×s	303.15	Viscosities of N,N-Dimethylformamide + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to
Viscosities of (N,N-Dimethylformamide + Water) at Atmospheric Pressure from (283.15 to 353.15) K dvisc 0.0005590 Paxs 333.15 Densities and Viscosities of (N,N-Dimethylformamide + Water) at Atmospheric Pressure from (283.15 to		dvisc	0.0004700	Paxs	353.15	Viscosities of (N,N-Dimethylformamide + Water) at Atmospheric Pressure from (283.15 to
Viscosities of (N,N-Dimethylformamide + Water) at Atmospheric Pressure from (283.15 to	-	dvisc	0.0005100	Paxs	343.15	Viscosities of (N,N-Dimethylformamide + Water) at Atmospheric Pressure from (283.15 to
		dvisc	0.0005590	Paxs	333.15	Viscosities of (N,N-Dimethylformamide + Water) at Atmospheric Pressure from (283.15 to

dvisc	0.0006170	Paxs	323.15	Densities and Viscosities of (N,N-Dimethylformamide + Water) at Atmospheric Pressure from (283.15 to 353.15) K
dvisc	0.0006840	Paxs	313.15	Densities and Viscosities of (N,N-Dimethylformamide + Water) at Atmospheric Pressure from (283.15 to 353.15) K
dvisc	0.0007660	Paxs	303.15	Densities and Viscosities of (N,N-Dimethylformamide + Water) at Atmospheric Pressure from (283.15 to 353.15) K
dvisc	0.0008640	Paxs	293.15	Densities and Viscosities of (N,N-Dimethylformamide + Water) at Atmospheric Pressure from (283.15 to 353.15) K
dvisc	0.0005490	Paxs	333.15	Volumetric Properties and Viscosities of Binary Mixtures of N,N-Dimethylformamide with Methanol and Ethanol in the Temperature Range (293.15 to 333.15) K
dvisc	0.0006080	Paxs	323.15	Volumetric Properties and Viscosities of Binary Mixtures of N,N-Dimethylformamide with Methanol and Ethanol in the Temperature Range (293.15 to 333.15) K

dvisc	0.0006750	Paxs	313.15	Volumetric Properties and Viscosities of Binary Mixtures of N,N-Dimethylformamide with Methanol and Ethanol in the Temperature Range (293.15 to 333.15) K
dvisc	0.0006691	Paxs	313.15	Electrical Conductances of Tetrabutylammonium Bromide, Sodium Tetraphenylborate, and Sodium Bromide in N,N-Dimethylformamide at (308.15, 313.15, 318.15, and 323.15) K
dvisc	0.0008080	Paxs	298.15	Volumetric Properties and Viscosities of Binary Mixtures of N,N-Dimethylformamide with Methanol and Ethanol in the Temperature Range (293.15 to 333.15) K
dvisc	0.0008630	Paxs	293.15	Volumetric Properties and Viscosities of Binary Mixtures of N,N-Dimethylformamide with Methanol and Ethanol in the Temperature Range (293.15 to 333.15) K
dvisc	0.0007116	Paxs	308.15	Viscosity of Urea in the Mixture of N,N-Dimethylformamide and Water
dvisc	0.0007547	Paxs	303.15	Viscosity of Urea in the Mixture of N,N-Dimethylformamide and Water
dvisc	0.0008045	Paxs	298.15	Viscosity of Urea in the Mixture of N,N-Dimethylformamide and Water
dvisc	0.0008542	Paxs	293.15	Viscosity of Urea in the Mixture of N,N-Dimethylformamide and Water

dvisc	0.0007763	Paxs	308.15 Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K
dvisc	0.0006826	Paxs	318.15 Conductometric Studies of 1-Ethyl-3-methylimidazolium Tetrafluoroborate and 1-Butyl-3-methylimidazolium Tetrafluoroborate in N,N-Dimethylformamide at Temperatures from (283.15 to 318.15) K
dvisc	0.0007172	Paxs	313.15 Conductometric Studies of 1-Ethyl-3-methylimidazolium Tetrafluoroborate and 1-Butyl-3-methylimidazolium Tetrafluoroborate in N,N-Dimethylformamide at Temperatures from (283.15 to 318.15) K
dvisc	0.0010158	Paxs	283.15 Conductometric Studies of 1-Ethyl-3-methylimidazolium Tetrafluoroborate and 1-Butyl-3-methylimidazolium Tetrafluoroborate in N,N-Dimethylformamide at Temperatures from (283.15 to 318.15) K
dvisc	0.0007100	Paxs	308.15 Densities, Viscosities, and Thermodynamic Properties of (N,N-Dimethylformamide + Benzene + Chlorobenzene) Ternary Mixtures at (298.15, 303.15, 308.15, and 313.15) K

dvisc	0.0007990	Paxs	303.15 Conductometric Studies of
			1-Ethyl-3-methylimidazolium
			Tetrafluoroborate and
			1-Butyl-3-methylimidazolium
			Tetrafluoroborate in
			N,N-Dimethylformamide at Temperatures
			from (283.15 to 318.15) K
dvisc	0.0008455	Paxs	298.15 Conductometric Studies of
			1-Ethyl-3-methylimidazolium
			Tetrafluoroborate and
			1-Butyl-3-methylimidazolium
			Tetrafluoroborate in
			N,N-Dimethylformamide at Temperatures
			from (283.15 to 318.15) K
dvisc	0.0008985	Paxs	293.15 Conductometric Studies of
			1-Ethyl-3-methylimidazolium
			Tetrafluoroborate and
			1-Butyl-3-methylimidazolium
			Tetrafluoroborate in
			N,N-Dimethylformamide at Temperatures
			from (283.15 to 318.15) K
dvisc	0.0009545	Paxs	288.15 Conductometric Studies of
			1-Ethyl-3-methylimidazolium
			Tetrafluoroborate and
			1-Butyl-3-methylimidazolium
			Tetrafluoroborate in
			N,N-Dimethylformamide at Temperatures
			from (283.15 to 318.15) K
			310.10 <i>)</i> N

dvisc	0.0005999	Paxs	323.15	Electrical Conductances of Tetrabutylammonium Bromide, Sodium Tetraphenylborate, and Sodium Bromide in N,N-Dimethylformamide (1) + Water (2) Mixtures at (308.15, 313.15, 318.15, and 323.15) K
dvisc	0.0006402	Paxs	318.15	Electrical Conductances of Tetrabutylammonium Bromide, Sodium Tetraphenylborate, and Sodium Bromide in N,N-Dimethylformamide (1) + Water (2) Mixtures at (308.15, 313.15, 318.15, and 323.15) K
dvisc	0.0006691	Paxs	313.15	Electrical Conductances of Tetrabutylammonium Bromide, Sodium Tetraphenylborate, and Sodium Bromide in N,N-Dimethylformamide (1) + Water (2) Mixtures at (308.15, 313.15, 318.15, and 323.15) K
dvisc	0.0007103	Paxs	308.15	Electrical Conductances of Tetrabutylammonium Bromide, Sodium Tetraphenylborate, and Sodium Bromide in N,N-Dimethylformamide (1) + Water (2) Mixtures at (308.15, 313.15, 318.15, and 323.15) K
dvisc	0.0007125	Paxs	318.15	Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K

dvisc	0.0008586	Paxs	298.15	Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K
dvisc	0.0006730	Paxs	313.15	Density and Viscosity Studies of Binary Mixtures of N,N-Dimethylformamide with Toluene and Methyl Benzoate at (298.15, 303.15, 308.15, and 313.15) K
dvisc	0.0007100	Paxs	308.15	Density and Viscosity Studies of Binary Mixtures of N,N-Dimethylformamide with Toluene and Methyl Benzoate at (298.15, 303.15, 308.15, and 313.15) K
dvisc	0.0007560	Paxs	303.15	Density and Viscosity Studies of Binary Mixtures of N,N-Dimethylformamide with Toluene and Methyl Benzoate at (298.15, 303.15, 308.15, and 313.15) K
dvisc	0.0007560	Paxs	303.15	Densities, Viscosities, and Thermodynamic Properties of (N,N-Dimethylformamide + Benzene + Chlorobenzene) Ternary Mixtures at (298.15, 303.15, 308.15, and 313.15) K
dvisc	0.0008030	Paxs	298.15	Density and Viscosity Studies of Binary Mixtures of N,N-Dimethylformamide with Toluene and Methyl Benzoate at (298.15, 303.15, 308.15, and 313.15) K

dvisc	0.0006730	Paxs	313.15	Densities and Viscosities of Binary Mixtures of N,N-Dimethylformamide with Benzyl Alcohol and Acetophenone at (298.15, 303.15, 308.15, and 313.15) K
dvisc	0.0007100	Paxs	308.15	Densities and Viscosities of Binary Mixtures of N,N-Dimethylformamide with Benzyl Alcohol and Acetophenone at (298.15, 303.15, 308.15, and 313.15) K
dvisc	0.0007560	Paxs	303.15	Densities and Viscosities of Binary Mixtures of N,N-Dimethylformamide with Benzyl Alcohol and Acetophenone at (298.15, 303.15, 308.15, and 313.15) K
dvisc	0.0005999	Paxs	323.15	Electrical Conductances of Tetrabutylammonium Bromide, Sodium Tetraphenylborate, and Sodium Bromide in N,N-Dimethylformamide at (308.15, 313.15, 318.15, and 323.15) K
dvisc	0.0008030	Paxs	298.15	Densities and Viscosities of Binary Mixtures of N,N-Dimethylformamide with Benzyl Alcohol and Acetophenone at (298.15, 303.15, 308.15, and 313.15) K

dvi	SC	0.0006730	Paxs	313.15	Densities, Viscosities, and Thermodynamic Properties of (N,N-Dimethylformamide + Benzene + Chlorobenzene) Ternary Mixtures at (298.15, 303.15, 308.15, and 313.15) K
dvi	SC	0.0007553	Paxs		Conductometric Studies of 1-Ethyl-3-methylimidazolium Tetrafluoroborate and 1-Butyl-3-methylimidazolium Tetrafluoroborate in N,N-Dimethylformamide at Temperatures from (283.15 to 318.15) K
dvi	sc	0.0008605	Paxs	298.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K
dvi	SC	0.0007712	Paxs	308.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K
dvi	SC	0.0006975	Paxs	318.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K
dvi	sc	0.0006374	Paxs	328.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K

dvisc	0.0007830	Paxs	298.15	Densities, Viscosities, and Conductivities of Phosphonic Acid Solutions in N,N-Dimethylformamide and Water
dvisc	0.0006990	Paxs	308.15	Densities, Viscosities, and Conductivities of Phosphonic Acid Solutions in N,N-Dimethylformamide and Water
dvisc	0.0006230	Paxs	318.15	Densities, Viscosities, and Conductivities of Phosphonic Acid Solutions in N,N-Dimethylformamide and Water
dvisc	0.0005550	Paxs	328.15	Densities, Viscosities, and Conductivities of Phosphonic Acid Solutions in N,N-Dimethylformamide and Water
dvisc	0.0004950	Paxs	338.15	Densities, Viscosities, and Conductivities of Phosphonic Acid Solutions in N,N-Dimethylformamide and Water
dvisc	0.0008030	Paxs	298.15	Excess Molar Volumes and Deviations in Viscosity of Binary Mixtures of N,N-Dimethylformamide with Aniline and Benzonitrile at (298.15, 303.15, 308.15, and 313.15) K
dvisc	0.0007560	Paxs	303.15	Excess Molar Volumes and Deviations in Viscosity of Binary Mixtures of N,N-Dimethylformamide with Aniline and Benzonitrile at (298.15, 303.15, 308.15, and 313.15) K

dvisc	0.0007100	Paxs	308.15	Excess Molar Volumes and Deviations in Viscosity of Binary Mixtures of N,N-Dimethylformamide with Aniline and Benzonitrile at (298.15, 303.15, 308.15, and 313.15) K
dvisc	0.0006730	Paxs	313.15	Excess Molar Volumes and Deviations in Viscosity of Binary Mixtures of N,N-Dimethylformamide with Aniline and Benzonitrile at (298.15, 303.15, 308.15, and 313.15) K
dvisc	0.0006402	Pa×s	318.15	Electrical Conductances of Tetrabutylammonium Bromide, Sodium Tetraphenylborate, and Sodium Bromide in N,N-Dimethylformamide at (308.15, 313.15, 318.15, and 323.15) K
econd	0.00	S/m	303.15	Micellar Properties and Related Thermodynamic Parameters of the 14-6-14, 2Br- Gemini Surfactant in Water + Organic Solvent Mixed Media
hfust	8.95	kJ/mol	212.90	NIST Webbook
hfust	8.95	kJ/mol	212.85	NIST Webbook
hfust	8.95	kJ/mol	212.90	NIST Webbook
hfust	8.95	kJ/mol	212.90	NIST Webbook
hvapt	43.10	kJ/mol	385.50	NIST Webbook
hvapt	56.70	kJ/mol	378.00	NIST Webbook
hvapt	46.70	kJ/mol	333.00	NIST Webbook
hvapt	41.80	kJ/mol	401.50	NIST Webbook
hvapt	43.60	kJ/mol	381.50	NIST Webbook
hvapt	49.20	kJ/mol	363.50	NIST Webbook
hvapt	42.50	kJ/mol	370.50	NIST Webbook

nyan	101.00	kPa	425.15	Vapor Liquid
pvap	101.00	RI A	420.10	Equilibrium Data for Methanol + tert-Butylamine + N,N-Dimethylformamide and Constituent Binary Systems at Atmospheric Pressure
pvap	7.03	kPa	345.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	6.43	kPa	343.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	5.88	kPa	341.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	5.37	kPa	339.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	4.89	kPa	337.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	7.67	kPa	347.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	4.45	kPa	335.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	4.04	kPa	333.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide

pvap	3.67	kPa	331.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	3.32	kPa	329.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	10.76	kPa	355.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	2.43	kPa	323.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	2.18	kPa	321.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	1.74	kPa	317.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	1.53	kPa	315.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	1.36	kPa	313.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	1.20	kPa	311.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	1.06	kPa	309.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide

pvap	0.92	kPa	307.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	96.15	kPa	424.60	Vapor Liquid Equilibrium Data for Binary Mixtures of Acetic Acid + Anisole, Acetone + Anisole, and Isopropanol + Anisole at Pressure 96.15 kPa
pvap	96.15	kPa	424.53	Vapor Liquid Equilibrium Data for Binary Mixtures of Acetic Acid + Anisole, Acetone + Anisole, and Isopropanol + Anisole at Pressure 96.15 kPa
pvap	101.30	kPa	426.05	Separation of azeotropic mixture (2, 2, 3, 3-Tetrafluoro-1-propanol + water) by extractive distillation: Entrainers selection and vapour-liquid equilibrium measurements
pvap	0.85	kPa	305.20	Vapour pressures and enthalpies of vaporisation of alkyl formamides
pvap	0.69	kPa	302.20	Vapour pressures and enthalpies of vaporisation of alkyl formamides
pvap	0.59	kPa	299.50	Vapour pressures and enthalpies of vaporisation of alkyl formamides
pvap	0.48	kPa	296.30	Vapour pressures and enthalpies of vaporisation of alkyl formamides

4						
	pvap	0.40	kPa	293.30	Vapour pressures and enthalpies of vaporisation of alkyl formamides	
	pvap	0.36	kPa	291.30	Vapour pressures and enthalpies of vaporisation of alkyl formamides	
	pvap	0.31	kPa	289.30	Vapour pressures and enthalpies of vaporisation of alkyl formamides	
	pvap	0.24	kPa	285.30	Vapour pressures and enthalpies of vaporisation of alkyl formamides	
	pvap	0.20	kPa	283.10	Vapour pressures and enthalpies of vaporisation of alkyl formamides	
	pvap	0.18	kPa	281.20	Vapour pressures and enthalpies of vaporisation of alkyl formamides	
	pvap	0.15	kPa	279.30	Vapour pressures and enthalpies of vaporisation of alkyl formamides	
	pvap	0.12	kPa	276.30	Vapour pressures and enthalpies of vaporisation of alkyl formamides	
	pvap	8.36	kPa	349.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide	
	pvap	9.10	kPa	351.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide	
	pvap	9.90	kPa	353.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide	

pvap	11.67	kPa	357.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	12.66	kPa	359.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	13.72	kPa	361.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	14.85	kPa	363.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	17.37	kPa	367.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	18.81	kPa	369.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	16.07	kPa	365.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	3.00	kPa	327.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	1.95	kPa	319.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide
pvap	2.70	kPa	325.15	Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide

rfi	1.42900	293.15	Effect of
			temperature and chain length on the viscosity and surface tension of binary systems of N,N-dimethylformamide
			with 1-octanol, 1-nonanol and 1-decanol
rfi	1.42900	293.10	Viscosity and surface tension of binary systems of
			N,N-dimethylformamide with alkan-1-ols at different temperatures
rfi	1.42100	313.15	Steric parameters and excess properties of hydroxamic acids
rfi	1.42300	308.15	Steric parameters and excess properties of hydroxamic acids
rfi	1.42530	303.15	Steric parameters and excess properties of hydroxamic acids
rfi	1.42700	298.15	Steric parameters and excess properties of hydroxamic acids
rfi	1.42220	313.15	Comparative study of physico-chemical properties of binary mixtures of N,N-dimethylformamide with 1-alkanols at
			different temperatures
rfi	1.42520	308.15	Comparative study of physico-chemical properties of binary mixtures of
			N,N-dimethylformamide with 1-alkanols at different temperatures

rfi	1.42710	303.15 Comparative study of physico-chemical properties of binary mixtures of N,N-dimethylformamide with 1-alkanols at different temperatures
rfi	1.42800	298.15 Comparative study of physico-chemical properties of binary mixtures of N,N-dimethylformamide with 1-alkanols at different temperatures
rfi	1.43070	298.15 Effects of the presence of ethylacetate or benzene on the densities and volumetric properties of mixture (styrene
		N,N-dimethylformamide)
rfi	1.43070	298.15 Densities and excess volumes of binary mixtures of N,N-dimethylformamide with aromatic hydrocarbon at different temperature
rfi	1.43070	298.15 Densities and volumetric properties of binary mixtures of xylene with N,N-dimethylformamide at different temperatures
rfi	1.42190	298.15 Coefficients and excess Gibbs energy of binary mixtures of N,N-dimethyl formamide with selected compounds at

rfi	1.43050	293.15	Excess Gibbs' energies of the binary mixtures formed by N,N-dimethylformamid with xylenes and cresols at 95.1 kPa	e
rfi	1.42820	298.15	(Vapor + liquid) equilibrium of binary mixtures formed by N,N-dimethyl formamide with some compounds at 95.1 kPa	
rfi	1.43050	293.15	Excess Gibbs energies of binary mixtures formed by nitrobenzene with selected compounds at 94.95 kPa	
rfi	1.42820	298.15	Excess Gibbs energies of selected binary mixtures formed by N,N-dimethyl formamide at 95.5 kPa	
rfi	1.42810	293.10	Phase equilibria for the extraction of sec-butylbenzene from dodecane with N,N-dimethylformamid	e
rfi	1.42650	298.15	Phase equilibria in the systems isobutyl alcohol +N,N-dimethylformamic isobutyl acetate +N,N-dimethylformamic and isobutyl alcohol + isobutyl acetate +N,N-dimethylformamic at 101.3 kPa	de

rfi	1.42880	298.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K
rfi	1.43090	293.15	Solubility Data for Roflumilast and Maraviroc in Various Solvents between T = (278.2-323.2) K
rfi	1.42640	303.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K
rfi	1.42380	308.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K
rfi	1.42650	298.15	Phase Equilibria Involved in Extractive Distillation of Dipropyl Ether + 1-Propyl Alcohol Using N,N-Dimethylformamide as Entrainer

rfi	1.43100	288.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.42760	298.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.42300	308.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.41800	318.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.42820	298.15 Vapor-Liquid Equilibrium and Excess Gibbs Energies of Hexane + N,N-Dimethyl Formamide, 2-Methylpropan-2-ol + 2-Aminophenol, N,N-Dimethyl Formamide, and 2-Propanol + Diisopropyl Amine at 94.4 kPa
rfi	1.43070	293.10 Phase Equilibria of Binary Systems Comprising Formic Acid, N,N-Dimethylformamide, 1-Chloro-2-ethylhexane, and 2-Ethyl-1-hexanol
rfi	1.43070	293.10 Vapor-Liquid Equilibria of Binary Systems Comprising 1-Chloro-2-ethylhexane and 2-Ethyl-1-hexanol

rfi	1.43030		293.15	Solid-Liquid Equilibrium Measurements for Posaconazole and Voriconazole in Several Solvents between T = 278.2 and 323.2 K Using Differential Thermal Analysis/Thermal Gravimetric Analysis
rfi	1.42820		298.15	Bubble Temperature Measurements on Binary Mixtures Formed by Cyclohexane at 94.7 kPa
rfi	1.43040		293.15	Experimental solubility for betulin and estrone in various solvents within the temperature range T = (293.2 to 328.2) K
rhol	944.10	kg/m3	298.15	Solubility for dilute sulfur dioxide in binary mixtures of N,N-dimethylformamide + Ethylene Glycol at T = 308.15 Kand p = 122.66 kPa
rhol	962.90	kg/m3	278.15	Apparent molar volumes and expansibilities of H2O and D2O in N,N-dimethylformamide and N,N-dimethylacetamide in the range of T = (278.15 to 318.15) K at p = 0.1 MPa: A comparative analysis

rhol	953.40	kg/m3	288.15	Apparent molar volumes and expansibilities of H2O and D2O in N,N-dimethylformamide and N,N-dimethylacetamide in the range of T = (278.15 to 318.15) K at p = 0.1 MPa: A comparative analysis
rhol	943.87	kg/m3	298.15	Apparent molar volumes and expansibilities of H2O and D2O in N,N-dimethylformamide and N,N-dimethylacetamide in the range of T = (278.15 to 318.15) K at p = 0.1 MPa: A comparative analysis
rhol	934.30	kg/m3	308.15	Apparent molar volumes and expansibilities of H2O and D2O in N,N-dimethylformamide and N,N-dimethylacetamide in the range of T = (278.15 to 318.15) K at p = 0.1 MPa: A comparative analysis
rhol	924.68	kg/m3	318.15	Apparent molar volumes and expansibilities of H2O and D2O in N,N-dimethylformamide and N,N-dimethylacetamide in the range of T = (278.15 to 318.15) K at p = 0.1 MPa: A comparative analysis
rhol	944.50	kg/m3	298.15	Physics and chemistry of an ionic liquid in some industrially important solvent media probed by physicochemical techniques

rhol	941.70	kg/m3	303.00	Thermo-physical properties of 1,3,4-oxadiazole derivatives in pure solvents
rhol	937.20	kg/m3	308.00	Thermo-physical properties of 1,3,4-oxadiazole derivatives in pure solvents
rhol	933.60	kg/m3	313.00	Thermo-physical properties of 1,3,4-oxadiazole derivatives in pure solvents
rhol	944.60	kg/m3	298.15	Densities and volumetric properties of binary mixtures of
			N,N-dimethyl	Iformamide/N,N-dimethylacetamide with some alkyl acrylates at temperatures from 288.15 K to 318.15 K
rhol	958.07	kg/m3	283.15 trif	Apparent molar volumes and compressibilities of lanthanum, gadolinium, lutetium and sodium fluoromethanesulfonates in
				N,N-dimethylformamide and N,N-dimethylacetamide
rhol	948.56	kg/m3	293.15 trif	Apparent molar volumes and compressibilities of lanthanum, gadolinium, lutetium and sodium fluoromethanesulfonates in
				N,N-dimethylformamide and N,N-dimethylacetamide
rhol	943.79	kg/m3		Apparent molar volumes and compressibilities of lanthanum, gadolinium, lutetium and sodium fluoromethanesulfonates in N,N-dimethylformamide and
			N	N,N-dimethylacetamide

rhol	939.01	kg/m3	303.15 Apparent molar volumes and compressibilities of lanthanum, gadolinium, lutetium and sodium trifluoromethanesulfonates in N,N-dimethylformamide and N,N-dimethylacetamide
rhol	929.43	kg/m3	313.15 Apparent molar volumes and compressibilities of lanthanum, gadolinium, lutetium and sodium trifluoromethanesulfonates in N,N-dimethylformamide and N,N-dimethylacetamide
rhol	919.81	kg/m3	323.15 Apparent molar volumes and compressibilities of lanthanum, gadolinium, lutetium and sodium trifluoromethanesulfonates in N,N-dimethylformamide and N,N-dimethylacetamide
rhol	910.11	kg/m3	333.15 Apparent molar volumes and compressibilities of lanthanum, gadolinium, lutetium and sodium trifluoromethanesulfonates in N,N-dimethylformamide and N,N-dimethylacetamide
rhol	944.29	kg/m3	298.15 Physico-chemical properties of binary mixtures of N,N-dimethylformamide with 1-octanol, 1-nonanol and 1-decanol at different temperatures

rhol	953.61	kg/m3	288.15	Densities, ultrasonic speeds, viscosities and excess properties of binary mixtures of methyl methacrylate with N,N-dimethylformamide and N,N-dimethylacetamide at different temperatures
rhol	949.10	kg/m3	293.15	Densities, ultrasonic speeds, viscosities and excess properties of binary mixtures of methyl methacrylate with N,N-dimethylformamide and N,N-dimethylacetamide at different temperatures
rhol	944.60	kg/m3	298.15	Densities, ultrasonic speeds, viscosities and excess properties of binary mixtures of methyl methacrylate with N,N-dimethylformamide and N,N-dimethylacetamide at different temperatures
rhol	940.10	kg/m3	303.15	Densities, ultrasonic speeds, viscosities and excess properties of binary mixtures of methyl methacrylate with N,N-dimethylformamide and N,N-dimethylacetamide at different temperatures

rhol	935.60	kg/m3	308.15	Densities, ultrasonic speeds,
				viscosities and excess properties of binary mixtures of methyl methacrylate with
				N,N-dimethylformamide and N,N-dimethylacetamide at different temperatures
rhol	931.10	kg/m3	313.15	Densities, ultrasonic speeds, viscosities and excess properties of binary mixtures of methyl methacrylate with N,N-dimethylformamide and N,N-dimethylacetamide at different temperatures
rhol	926.60	kg/m3	318.15	Densities, ultrasonic speeds, viscosities and excess properties of binary mixtures of methyl methacrylate with N,N-dimethylformamide and N,N-dimethylacetamide at different temperatures
rhol	944.34	kg/m3	298.15	Excess molar enthalpies of binary systems containing 2-octanone, hexanoic acid, or octanoic acid at T = 298.15 K
rhol	939.30	kg/m3	303.15	Solubility for dilute sulfur dioxide in binary mixtures of N,N-dimethylformamide + Ethylene Glycol at T = 308.15 Kand p = 122.66 kPa

rhol	934.50	kg/m3	308.15	Solubility for dilute sulfur dioxide in binary mixtures of N,N-dimethylformamide + Ethylene Glycol at T = 308.15 Kand p = 122.66 kPa
rhol	929.50	kg/m3	313.15	Solubility for dilute sulfur dioxide in binary mixtures of N,N-dimethylformamide + Ethylene Glycol at T = 308.15 Kand p = 122.66 kPa
rhol	924.80	kg/m3	318.15	Solubility for dilute sulfur dioxide in binary mixtures of N,N-dimethylformamide + Ethylene Glycol at T = 308.15 Kand p = 122.66 kPa
rhol	941.70	kg/m3	303.00	Thermo-acoustical studies of 1,3,4-oxadiazole as binary mixture at three different temperatures
rhol	937.20	kg/m3	308.00	Thermo-acoustical studies of 1,3,4-oxadiazole as binary mixture at three different temperatures
rhol	933.60	kg/m3	313.00	Thermo-acoustical studies of 1,3,4-oxadiazole as binary mixture at three different temperatures
rhol	944.60	kg/m3	298.15	Topological and thermodynamic investigations of mixtures containing o-chlorotoluene and lower amides
rhol	939.83	kg/m3	303.15	Topological and thermodynamic investigations of mixtures containing o-chlorotoluene and lower amides

rhol	935.05	kg/m3	308.15	Topological and thermodynamic investigations of mixtures containing o-chlorotoluene and lower amides	
rhol	943.81	kg/m3	298.15	Excess molar enthalpies and (vapour + liquid) equilibria for mixtures containing N,N-dialkylamides and a,x-dichloroalkanes	
rhol	940.05	kg/m3	303.15	Solution thermodynamics	
			iron(III)-N,N'-et	of hylene-bis(salicylideneiminato in binary mixtures)-chloride
				of N,N-dimethylformamide and acetonitrile at T = (298.15, 303.15, 308.15 and 313.15) K	
rhol	935.71	kg/m3	308.15	Solution thermodynamics of	
			iron(III)-N,N'-et	hylene-bis(salicylideneiminato in binary mixtures of N,N-dimethylformamide and acetonitrile at T = (298.15, 303.15, 308.15 and 313.15) K)-chloride
rhol	929.91	kg/m3	313.15	Solution thermodynamics of	
			iron(III)-N,N'-et	hylene-bis(salicylideneiminato in binary mixtures)-chloride
				of N,N-dimethylformamide and acetonitrile at T = (298.15, 303.15, 308.15 and 313.15) K	
rhol	943.97	kg/m3	298.15	lonic molar volumes in methanol mixtures with acetonitrile, N,N-dimethylformamide and propylene carbonate at T = 298.15 K	

rhol	953.53	kg/m3	288.15 So	lution behavior
			N,N-di + te	of le/N-methylformamide/ methylformamide) CsCl + water} rnary systems at multiple emperatures
rhol	943.89	kg/m3	{(formamid N,N-di + te	lution behavior of le/N-methylformamide/ methylformamide) CsCl + water} rnary systems at multiple emperatures
rhol	934.39	kg/m3	{(formamid N,N-di + te	lution behavior of le/N-methylformamide/ methylformamide) CsCl + water} rnary systems at multiple emperatures
rhol	944.60	kg/m3	exi co tel o- wi a cy	Excess molar volumes and cess isentropic mpressibilities of binary and rnary mixtures of chlorotoluene th cyclic ether nd amides or yclohexane at different emperatures
rhol	939.83	kg/m3	exi co (tel o- wi a cy	Excess molar volumes and cess isentropic mpressibilities of binary and rnary mixtures of chlorotoluene th cyclic ether nd amides or yclohexane at different emperatures
rhol	935.05	kg/m3	308.15 E exico co tel o- wi a	Excess molar volumes and cess isentropic mpressibilities of binary and rnary mixtures of echlorotoluene th cyclic ether nd amides or yclohexane at different emperatures

rhol	943.91	kg/m3	298.15	Solvation of alkaline earth metal ions in N,N-dimethylformamide and N,N-dimethylacetamide - A volumetric and acoustic study
rhol	939.14	kg/m3	303.15	Solvation of alkaline earth metal ions in N,N-dimethylformamide and N,N-dimethylacetamide - A volumetric and acoustic study
rhol	934.35	kg/m3	308.15	Solvation of alkaline earth metal ions in N,N-dimethylformamide and N,N-dimethylacetamide - A volumetric and acoustic study
rhol	929.55	kg/m3	313.15	Solvation of alkaline earth metal ions in N,N-dimethylformamide and N,N-dimethylacetamide - A volumetric and acoustic study
rhol	924.74	kg/m3	318.15	Solvation of alkaline earth metal ions in N,N-dimethylformamide and N,N-dimethylacetamide - A volumetric and acoustic study
rhol	948.82	kg/m3	293.15	Thermodynamics of amide + ketone mixtures. 1. Volumetric, speed of sound and refractive index data for N,N-dimethylformamide + 2-alkanone systems at several temperatures

rhol	944.06	kg/m3	298.15	Thermodynamics of amide + ketone mixtures. 1. Volumetric, speed of sound and refractive index data for N,N-dimethylformamide + 2-alkanone systems at several temperatures
rhol	939.28	kg/m3	303.15	Thermodynamics of amide + ketone mixtures. 1. Volumetric, speed of sound and refractive index data for N,N-dimethylformamide + 2-alkanone systems at several temperatures
rhol	944.00	kg/m3	298.00	Densities, ultrasonic speeds and refractive indices of phenetole with N-methyl-2-pyrrolidone, N,N-dimethylformamide and tetrahydrofuran binary mixtures at different temperatures
rhol	939.00	kg/m3	303.00	Densities, ultrasonic speeds and refractive indices of phenetole with N-methyl-2-pyrrolidone, N,N-dimethylformamide and tetrahydrofuran binary mixtures at different temperatures
rhol	935.00	kg/m3	308.00	Densities, ultrasonic speeds and refractive indices of phenetole with N-methyl-2-pyrrolidone, N,N-dimethylformamide and tetrahydrofuran binary mixtures at different temperatures

rhol	943.95	kg/m3	298.15 Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide A volumetric and acoustic study
rhol	939.19	kg/m3	303.15 Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide A volumetric and acoustic study
rhol	934.40	kg/m3	308.15 Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide A volumetric and acoustic study
rhol	929.61	kg/m3	313.15 Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide A volumetric and acoustic study
rhol	924.80	kg/m3	318.15 Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide A volumetric and acoustic study
rhol	915.14	kg/m3	328.15 Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide A volumetric and acoustic study
rhol	939.18	kg/m3	303.15 Effect of organic solvents on lowering the viscosity of 1-hexyl-3-methylimidazolium chloride

rhol	934.41	kg/m3	308.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	
rhol	929.64	kg/m3	313.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3-methylimidazolium chloride	
rhol	924.86	kg/m3	318.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	
rhol	920.07	kg/m3	323.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3-methylimidazolium chloride	
rhol	915.26	kg/m3	328.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	
rhol	910.44	kg/m3	333.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	
rhol	905.60	kg/m3	338.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	
rhol	900.74	kg/m3	343.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	
rhol	895.87	kg/m3	348.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	

rhol	890.98	kg/m3	353.15 Effect of organic solvents on lowering the viscosity of 1-hexyl-3-methylimidazolium chloride
rhol	943.90	kg/m3	298.15 Solvation of ionic liquids based on N-methyl-N-alkylmorpholinium cations in N,N-dimethylformamide and N,N-dimethylacetamide - Volumetric and compressibility studies
rhol	939.12	kg/m3	303.15 Solvation of ionic liquids based on N-methyl-N-alkylmorpholinium cations in N,N-dimethylformamide and N,N-dimethylacetamide - Volumetric and compressibility studies
rhol	934.34	kg/m3	308.15 Solvation of ionic liquids based on N-methyl-N-alkylmorpholinium cations in N,N-dimethylformamide and N,N-dimethylacetamide - Volumetric and compressibility studies
rhol	929.54	kg/m3	313.15 Solvation of ionic liquids based on N-methyl-N-alkylmorpholinium cations in N,N-dimethylformamide and N,N-dimethylacetamide - Volumetric and compressibility studies
rhol	924.73	kg/m3	318.15 Solvation of ionic liquids based on N-methyl-N-alkylmorpholinium cations in N,N-dimethylformamide and N,N-dimethylacetamide - Volumetric and compressibility studies

rhol	962.91	kg/m3	278.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents	
rhol	958.17	kg/m3	283.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents	
rhol	953.41	kg/m3	288.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents	
rhol	948.66	kg/m3	293.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents	
rhol	943.89	kg/m3	298.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents	
rhol	939.12	kg/m3	303.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents	
rhol	934.34	kg/m3	308.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents	

rhol	948.30	kg/m3	293.15	Excess volumes, Viscosities, and Excess Gibbs Energy of Activation for Viscous Flow, for binary and ternary mixtures 1- propanol + N-N dimethylformamid + chloroform at different temperatures	
rhol	938.70	kg/m3	303.15	Excess volumes, Viscosities, and Excess Gibbs Energy of Activation for Viscous Flow, for binary and ternary mixtures 1- propanol + N-N dimethylformamid + chloroform at different temperatures	
rhol	929.10	kg/m3	313.15	Excess volumes, Viscosities, and Excess Gibbs Energy of Activation for Viscous Flow, for binary and ternary mixtures 1- propanol + N-N dimethylformamid + chloroform at different temperatures	
rhol	919.90	kg/m3	323.15	Excess volumes, Viscosities, and Excess Gibbs Energy of Activation for Viscous Flow, for binary and ternary mixtures 1- propanol + N-N dimethylformamid + chloroform at different temperatures	

rhol	943.70	kg/m3	298.15 Conductometric, refractometric and FT-IR spectroscopic study of [EMIm]NO3, [EMIm]CH3SO3, and [EMIm]OTs in N,N-dimethyl formamide, N,N-dimethyl acetamide and dimethyl sulphoxide
rhol	939.23	kg/m3	303.15 Density and Viscosity Measurements for Binary Mixtures of 1-Ethyl-3-methylimidazolium Tetrafluoroborate ([Emim][BF4]) with Dimethylacetamide, Dimethylformamide, and Dimethyl Sulfoxide
rhol	929.64	kg/m3	313.15 Density and Viscosity Measurements for Binary Mixtures of 1-Ethyl-3-methylimidazolium Tetrafluoroborate ([Emim][BF4]) with Dimethylacetamide, Dimethylformamide, and Dimethyl Sulfoxide
rhol	920.02	kg/m3	323.15 Density and Viscosity Measurements for Binary Mixtures of 1-Ethyl-3-methylimidazolium Tetrafluoroborate ([Emim][BF4]) with Dimethylacetamide, Dimethylformamide, and Dimethyl Sulfoxide

rhol	910.33	kg/m3	333.15 Density and Viscosity Measurements for Binary Mixtures of 1-Ethyl-3-methylimidazolium Tetrafluoroborate ([Emim][BF4]) with Dimethylacetamide, Dimethylformamide, and Dimethyl Sulfoxide
rhol	948.88	kg/m3	293.15 Thermodynamics of amide + amine mixtures. 1. Volumetric, speed of sound, and refractive index data for N,Ndimethylformamide + N-propylpropan-1-amine, + N-butylbutan-1-amine, or + hexan-1-amine systems at several temperatures
rhol	944.08	kg/m3	298.15 Thermodynamics of amide + amine mixtures. 1. Volumetric, speed of sound, and refractive index data for N,Ndimethylformamide + N-propylpropan-1-amine, + N-butylbutan-1-amine, or + hexan-1-amine systems at several temperatures

rhol	939.36	kg/m3	303.15 Thermodynamics of amide + amine mixtures. 1. Volumetric, speed of sound, and refractive index data for N,Ndimethylformamide + N-propylpropan-1-amine, + N-butylbutan-1-amine, or + hexan-1-amine systems at several temperatures
rhol	948.74	kg/m3	293.15 Density and Speed of Sound of Binary Mixtures of Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate, N,N-Dimethylformamide, and N,N-Dimethylacetamide at Temperature Range of 293.15 343.15 K: Measurement and PC-SAFT Modeling
rhol	943.98	kg/m3	298.15 Density and Speed of Sound of Binary Mixtures of Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate, N,N-Dimethylformamide, and N,N-Dimethylacetamide at Temperature Range of 293.15 343.15 K: Measurement and PC-SAFT Modeling

rhol	939.20	kg/m3	303.15 Density and Speed of Sound of Binary Mixtures of Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate, N,N-Dimethylformamide, and N,N-Dimethylacetamide at Temperature Range of 293.15 343.15 K: Measurement and PC-SAFT Modeling
rhol	934.42	kg/m3	308.15 Density and Speed of Sound of Binary Mixtures of Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate, N,N-Dimethylformamide, and N,N-Dimethylacetamide at Temperature Range of 293.15 343.15 K: Measurement and PC-SAFT Modeling
rhol	929.62	kg/m3	313.15 Density and Speed of Sound of Binary Mixtures of Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate, N,N-Dimethylformamide, and N,N-Dimethylacetamide at Temperature Range of 293.15 343.15 K: Measurement and PC-SAFT Modeling
rhol	924.81	kg/m3	318.15 Density and Speed of Sound of Binary Mixtures of Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate, N,N-Dimethylformamide, and N,N-Dimethylacetamide at Temperature Range of 293.15 343.15 K: Measurement and PC-SAFT Modeling

rhol	919.99	kg/m3	323.15 Density and Speed of Sound of Binary Mixtures of Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate, N,N-Dimethylformamide, and N,N-Dimethylacetamide at Temperature Range of 293.15 343.15 K: Measurement and PC-SAFT Modeling
rhol	915.16	kg/m3	328.15 Density and Speed of Sound of Binary Mixtures of Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate, N,N-Dimethylformamide, and N,N-Dimethylacetamide at Temperature Range of 293.15 343.15 K: Measurement and PC-SAFT Modeling
rhol	910.31	kg/m3	333.15 Density and Speed of Sound of Binary Mixtures of Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate, N,N-Dimethylformamide, and N,N-Dimethylacetamide at Temperature Range of 293.15 343.15 K: Measurement and PC-SAFT Modeling
rhol	905.45	kg/m3	338.15 Density and Speed of Sound of Binary Mixtures of Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate, N,N-Dimethylformamide, and N,N-Dimethylacetamide at Temperature Range of 293.15 343.15 K: Measurement and PC-SAFT Modeling

rhol	900.57	kg/m3	343.15 Density and Speed of Sound of Binary Mixtures of Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate, N,N-Dimethylformamide, and N,N-Dimethylacetamide at Temperature Range of 293.15 343.15 K: Measurement and PC-SAFT Modeling
rhol	967.56	kg/m3	273.15 Density, Viscosity, and Electrical Conductivity of Protic Amidium Bis(trifluoromethanesulfonyl)amide Ionic Liquids
rhol	962.83	kg/m3	278.15 Density, Viscosity, and Electrical Conductivity of Protic Amidium Bis(trifluoromethanesulfonyl)amide Ionic Liquids
rhol	958.10	kg/m3	283.15 Density, Viscosity, and Electrical Conductivity of Protic Amidium Bis(trifluoromethanesulfonyl)amide Ionic Liquids
rhol	953.37	kg/m3	288.15 Density, Viscosity, and Electrical Conductivity of Protic Amidium Bis(trifluoromethanesulfonyl)amide Ionic Liquids
rhol	948.61	kg/m3	293.15 Density, Viscosity, and Electrical Conductivity of Protic Amidium Bis(trifluoromethanesulfonyl)amide Ionic Liquids
rhol	943.85	kg/m3	298.15 Density, Viscosity, and Electrical Conductivity of Protic Amidium Bis(trifluoromethanesulfonyl)amide Ionic Liquids

rhol	939.07	kg/m3	303.15 Density, Viscosity, and Electrical Conductivity of Protic Amidium Bis(trifluoromethanesulfonyl)amide Ionic Liquids
rhol	929.50	kg/m3	313.15 Density, Viscosity, and Electrical Conductivity of Protic Amidium Bis(trifluoromethanesulfonyl)amide Ionic Liquids
rhol	919.86	kg/m3	323.15 Density, Viscosity, and Electrical Conductivity of Protic Amidium Bis(trifluoromethanesulfonyl)amide Ionic Liquids
rhol	910.17	kg/m3	333.15 Density, Viscosity, and Electrical Conductivity of Protic Amidium Bis(trifluoromethanesulfonyl)amide Ionic Liquids
rhol	900.41	kg/m3	343.15 Density, Viscosity, and Electrical Conductivity of Protic Amidium Bis(trifluoromethanesulfonyl)amide Ionic Liquids
rhol	890.57	kg/m3	353.15 Density, Viscosity, and Electrical Conductivity of Protic Amidium Bis(trifluoromethanesulfonyl)amide Ionic Liquids
rhol	880.65	kg/m3	363.15 Density, Viscosity, and Electrical Conductivity of Protic Amidium Bis(trifluoromethanesulfonyl)amide Ionic Liquids
rhol	943.89	kg/m3	298.15 Isobaric Vapor Liquid Equilibria for Two Binary Systems {Propylene Glycol Methyl Ether Acetate + Methanol} and {Propylene Glycol Methyl Ether Acetate + N,N-Dimethylformamide} at p = 30.0, 50.0, and 70.0 kPa

rhol	939.18	kg/m3	303.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	934.41	kg/m3	308.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	929.64	kg/m3	313.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	924.86	kg/m3	318.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	920.07	kg/m3	323.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	915.26	kg/m3	328.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	910.44	kg/m3	333.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	

rhol	905.60	kg/m3	338.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	900.74	kg/m3	343.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	895.87	kg/m3	348.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	890.98	kg/m3	353.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	944.69	kg/m3	298.15	Liquid-Liquid Equilibrium for Ternary Systems, Water + 5-Hydroxymethylfurfural + (1-Butanol, Isobutanol, Methyl Isobutyl Ketone), at 313.15, 323.15, and 333.15 K	
rhol	943.93	kg/m3	Т	Effect of Solvents and Temperature on Interactions in Binary and Ternary Mixtures of Butyl-3-methylimidazolium rifluoromethanesulfonate with Acetonitrile or/and N,N-Dimethylformamide	

rhol	939.16	kg/m3	303.15 Effect of Solvents and Temperature on Interactions in Binary and Ternary Mixtures of 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate with Acetonitrile or/and N,N-Dimethylformamide
rhol	934.37	kg/m3	308.15 Effect of Solvents and Temperature on Interactions in Binary and Ternary Mixtures of 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate with Acetonitrile or/and N,N-Dimethylformamide
rhol	929.58	kg/m3	313.15 Effect of Solvents and Temperature on Interactions in Binary and Ternary Mixtures of 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate with Acetonitrile or/and N,N-Dimethylformamide
rhol	924.76	kg/m3	318.15 Effect of Solvents and Temperature on Interactions in Binary and Ternary Mixtures of 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate with Acetonitrile or/and N,N-Dimethylformamide
rhol	919.95	kg/m3	323.15 Effect of Solvents and Temperature on Interactions in Binary and Ternary Mixtures of 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate with Acetonitrile or/and N,N-Dimethylformamide

rhol	953.29	kg/m3	288.15	Density, Speed of Sound, and Viscosity of Diethylene Glycol Monoethyl Ether +
				N,N-Dimethylformamide (Ethanol, Water) at T = 288.15-318.15 K
rhol	943.77	kg/m3	298.15	Density, Speed of Sound, and Viscosity of Diethylene Glycol Monoethyl Ether + N,N-Dimethylformamide
				(Ethanol, Water) at T = 288.15-318.15 K
rhol	934.21	kg/m3	308.15	Density, Speed of Sound, and Viscosity of Diethylene Glycol Monoethyl Ether
				N,N-Dimethylformamide (Ethanol, Water) at T = 288.15-318.15 K
rhol	924.59	kg/m3	318.15	Density, Speed of Sound, and Viscosity of Diethylene Glycol Monoethyl Ether
				N,N-Dimethylformamide (Ethanol, Water) at T = 288.15-318.15 K
rhol	943.81	kg/m3	298.15	Liquid-Liquid Equilibrium and Excess Enthalpies in Binary Systems Methylcyclohexane + Methanol and Methylcyclohexane +
				N,N-Dimethylformamide

rhol	943.65	kg/m3	298.15	Excess Molar Volumes and Kinematic Viscosities for Binary Mixtures of Dipropylene Glycol Monobutyl Ether and Dipropylene Glycol tert-Butyl Ether with 2-Pyrrolidinone, N-Methyl-2-pyrrolidinone, N,N-Dimethylformamide, and N,N-Dimethylacetamide at 298.15 K
rhol	958.08	kg/m3	283.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. I. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in N,N-Dimethylformamide
rhol	958.16	kg/m3	283.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. I. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in N,N-Dimethylformamide
rhol	943.81	kg/m3	298.15	(Vapour + liquid) equilibria and excess molar enthalpies for binary mixtures containing N,N-dialkylamides and 1-chloroalkanes
rhol	948.57	kg/m3	293.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. I. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in N,N-Dimethylformamide

rhol	948.65	kg/m3	293.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. I. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in
rhol	943.80	kg/m3	298.15	N,N-Dimethylformamide Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. I. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in N,N-Dimethylformamide
rhol	943.88	kg/m3	298.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. I. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in N,N-Dimethylformamide
rhol	939.02	kg/m3	303.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. I. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in N,N-Dimethylformamide
rhol	939.11	kg/m3	303.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. I. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in N,N-Dimethylformamide

rhol	929.44	kg/m3	313.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. I. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in N,N-Dimethylformamide
rhol	929.53	kg/m3	313.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. I. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in N,N-Dimethylformamide
rhol	919.81	kg/m3	323.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. I. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in N,N-Dimethylformamide
rhol	919.90	kg/m3	323.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. I. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in N,N-Dimethylformamide
rhol	910.12	kg/m3	333.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. I. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in N,N-Dimethylformamide

rhol	910.20	kg/m3	333.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. I. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in N,N-Dimethylformamide
rhol	943.81	kg/m3	298.15	Liquid-Liquid Equilibrium and Excess Enthalpies in the Binary System 2-Methylpentane +
				N,N-Dimethylformamide
rhol	944.20	kg/m3	298.15	Excess Molar Volumes and Viscosity Deviations for the Ternary System N,N-Dimethylformamide
				N-Methylformamide + Water and the Binary Subsystems at 298.15 K
rhol	943.88	kg/m3	298.15	Thermodynamics of Mixtures Containing a Strongly Polar Compound. 8. Liquid-Liquid Equilibria for N,N-Dialkylamide + Selected N-Alkanes
rhol	943.88	kg/m3	298.15 N,N'-Bis(2- ₁	Effect of pyridylmethylidene)-1,2-diiminoethane (BPIE) Schiff Base on the Thermophysical Properties of Ionic Liquids in N,N-Dimethylformamide Solutions at 298.15 K
rhol	948.74	kg/m3	293.15	Volumetric Properties of Urea in the Mixture of N,N-Dimethylformamide with Water
rhol	943.98	kg/m3	298.15	Volumetric Properties of Urea in the Mixture of N,N-Dimethylformamide with Water

rhol	939.20	kg/m3	303.15 Volumetric Properties of Urea in the Mixture of N,N-Dimethylformamide with Water
rhol	934.42	kg/m3	308.15 Volumetric Properties of Urea in the Mixture of N,N-Dimethylformamide with Water
rhol	948.79	kg/m3	293.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide with N-Methylformamide and N,N-Dimethylformamide from (293.15 to 323.15) K
rhol	943.87	kg/m3	298.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide with N-Methylformamide and N,N-Dimethylformamide from (293.15 to 323.15) K
rhol	938.98	kg/m3	303.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide with N-Methylformamide and N,N-Dimethylformamide from (293.15 to 323.15) K
rhol	934.07	kg/m3	308.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide with N-Methylformamide and N,N-Dimethylformamide from (293.15 to 323.15) K

rhol	929.11	kg/m3	313.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide with N-Methylformamide and N,N-Dimethylformamide from (293.15 to 323.15) K
rhol	924.04	kg/m3	318.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide with N-Methylformamide and N,N-Dimethylformamide from (293.15 to 323.15) K
rhol	918.91	kg/m3	323.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide with N-Methylformamide and N,N-Dimethylformamide from (293.15 to 323.15) K
rhol	948.72	kg/m3	293.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-Methylpyrrolidinium Tris(pentafluoroethyl)trifluorophosphate with N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to 323.15) K

rhol	943.86	kg/m3	298.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-Methylpyrrolidinium Tris(pentafluoroethyl)trifluorophosphate with N-Methylformamide, N-Ethylformamide,
			N,N-Dimethylformamide, N,N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to 323.15) K
rhol	939.00	kg/m3	303.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-Methylpyrrolidinium Tris(pentafluoroethyl)trifluorophosphate with N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to 323.15) K
rhol	934.08	kg/m3	308.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-Methylpyrrolidinium Tris(pentafluoroethyl)trifluorophosphate with N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to 323.15) K
rhol	929.13	kg/m3	313.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-Methylpyrrolidinium Tris(pentafluoroethyl)trifluorophosphate with N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to 323.15) K

rhol	924.06	kg/m3	318.15 1- Tris(pe	Volumetric Properties of Binary Mixtures of Butyl-1-Methylpyrrolidinium Intafluoroethyl)trifluorophosphate with N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to 323.15) K
rhol	918.96	kg/m3		Volumetric Properties of Binary Mixtures of Butyl-1-Methylpyrrolidinium Intafluoroethyl)trifluorophosphate with N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to 323.15) K
rhol	953.79	kg/m3	288.15	Physicochemical Properties for the Binary Systems of Ionic Liquids [Cnmim]Cl + N,N-Dimethylformamide
rhol	944.26	kg/m3	298.15	Physicochemical Properties for the Binary Systems of Ionic Liquids [Cnmim]Cl + N,N-Dimethylformamide
rhol	935.55	kg/m3	308.15	Structural and interactional studies of homologous series of a,x-alkanediols in N,N-dimethylformamide
rhol	925.16	kg/m3	318.15	Physicochemical Properties for the Binary Systems of Ionic Liquids [Cnmim]Cl + N,N-Dimethylformamide

rhol	948.72	kg/m3	293.15 Volumetric Properties of Binary Mixtures
			of 1-Butyl-3-Methylimidazolium Tris(pentafluoroethyl)trifluorophosphate with
			N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide,
			and N,N-Dimethylacetamide from (293.15 to 323.15) K
rhol	943.86	kg/m3	298.15 Volumetric Properties of Binary Mixtures
			of 1-Butyl-3-Methylimidazolium Tris(pentafluoroethyl)trifluorophosphate with
			N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide,
			and N,N-Dimethylacetamide from (293.15 to 323.15) K
rhol	939.00	kg/m3	303.15 Volumetric Properties of Binary Mixtures of
			1-Butyl-3-Methylimidazolium Tris(pentafluoroethyl)trifluorophosphate with
			N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide,
			and N,N-Dimethylacetamide from (293.15 to 323.15) K
rhol	934.08	kg/m3	308.15 Volumetric Properties of Binary Mixtures of
			1-Butyl-3-Methylimidazolium Tris(pentafluoroethyl)trifluorophosphate with
			N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide,
			and N,N-Dimethylacetamide from (293.15 to 323.15) K

rhol	929.13	kg/m3	313.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-Methylimidazolium Tris(pentafluoroethyl)trifluorophosphate with N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to 323.15) K
rhol	924.06	kg/m3	318.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-Methylimidazolium Tris(pentafluoroethyl)trifluorophosphate with N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to 323.15) K
rhol	918.96	kg/m3	323.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-Methylimidazolium Tris(pentafluoroethyl)trifluorophosphate with N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to 323.15) K
rhol	943.82	kg/m3	298.15 Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. III. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Chlorides in N,N-Dimethylformamide

rhol	943.80	kg/m3	298.15 Densities and Isothermal Compressibilities at Pressures up to 20 MPa of the Systems N,N-Dimethylforman or N,N-Dimethylacetan + r,o-Dichloroalkane	nide nide
rhol	934.20	kg/m3	308.15 Densities and Isothermal Compressibilities at Pressures up to 20 MPa of the Systems N,N-Dimethylforman or N,N-Dimethylacetan + r,o-Dichloroalkand	nide nide
rhol	943.81	kg/m3	298.15 Surface Tension and Surface Properties of Binary Mixtures of 1,4-Dioxane of N,N-Dimethyl Formamide with n-Alkyl Acetates	
rhol	944.21	kg/m3	298.15 (Liquid + Liquid) Equilibrium for (N,N-Dimethylformar (DMF) + Hexadecane) at Temperatures between (293.15 and 313.15) K and Ternary Mixtures of (DMF) + Hexadecane) with Either Quinoline, or Pyridine, or Pyrrole, or Aniline, or Indole at T = 298.15 K	
rhol	948.63	kg/m3	293.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidaz Chloride + Water or Hydrophilic Solvents at Different Temperatures	

rhol	943.86	kg/m3	298.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different
rhol	939.08	kg/m3	Temperatures 303.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures
rhol	934.29	kg/m3	308.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures
rhol	929.48	kg/m3	313.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures
rhol	924.68	kg/m3	318.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures
rhol	926.70	kg/m3	318.15 Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K

rhol	931.20	kg/m3	313.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	935.70	kg/m3	308.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	940.10	kg/m3	303.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	944.60	kg/m3	298.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	949.10	kg/m3	293.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	935.55	kg/m3	308.15	A comparative study of thermophysical and spectroscopic properties in mixtures of isomeric butanediol and N,N-dimethylformamic	de

rhol	949.17	kg/m3	293.15	Volumetric properties of binary mixtures of (water + organic solvents) at temperatures between T = 288.15 K and T = 303.15 K at p = 0.1 MPa
rhol	943.79	kg/m3	298.15	Limiting partial molar volumes and expansibilities of ammonium perchlorate, tetraalkylammonium perchlorates, and tetrabutylammonium tetraphenylborate in
rhol	885.68	kg/m3	358.15	Volumetric properties of (N,N-dimethylformamide + aliphatic diethers) at Temperatures ranging from (298.15 to 358.15) K
rhol	900.41	kg/m3	343.15	Volumetric properties of (N,N-dimethylformamide + aliphatic diethers) at Temperatures ranging from (298.15 to 358.15) K
rhol	915.07	kg/m3	328.15	Volumetric properties of (N,N-dimethylformamide + aliphatic diethers) at Temperatures ranging from (298.15 to 358.15) K
rhol	930.98	kg/m3	313.15	Volumetric properties of (N,N-dimethylformamide + aliphatic diethers) at Temperatures ranging from (298.15 to 358.15) K

rhol	943.85	kg/m3	298.15	Volumetric properties of (N,N-dimethylformamide + aliphatic diethers) at Temperatures ranging from (298.15 to 358.15) K
rhol	943.78	kg/m3	298.15	Thermodynamics of amide + amine mixtures. 5. Excess molar enthalpies of N,N-dimethylformamide or N,N-dimethylacetamide + N-propylpropan-1-amine, + N-butylbutan-1-amine, or + hexan-1-amine systems at 298.15 K. Application of the ERAS model
rhol	943.98	kg/m3	298.15	PrhoT measurement and PC-SAFT modeling of N,N-dimethyl formamide, N -methyl formamide, N,N-dimethyl acetamide, and ethylenediamine from T = (293.15-423.15) K and pressures up to 35 MPa
rhol	924.70	kg/m3	318.15	Solubility for dilute sulfur dioxide, viscosities, excess properties, and viscous flow thermodynamics of binary system N, N-dimethylformamide + diethylene glycol

rhol	929.90	kg/m3	313.15	Solubility for dilute sulfur dioxide, viscosities, excess properties, and viscous flow thermodynamics of binary system N, N-dimethylformamide + diethylene glycol
rhol	934.20	kg/m3	308.15	Solubility for dilute sulfur dioxide, viscosities, excess properties, and viscous flow thermodynamics of binary system N, N-dimethylformamide + diethylene glycol
rhol	939.60	kg/m3	303.15	Solubility for dilute sulfur dioxide, viscosities, excess properties, and viscous flow thermodynamics of binary system N, N-dimethylformamide + diethylene glycol
rhol	943.90	kg/m3	298.15	Solubility for dilute sulfur dioxide, viscosities, excess properties, and viscous flow thermodynamics of binary system N, N-dimethylformamide + diethylene glycol
rhol	943.83	kg/m3	298.15	Volumetric investigation of the ternary system ethanol + dimethylformamide + cyclohexane at 298.15 K

rhol	948.70	kg/m3	293.15 Bubble point measurements of binary mixtures formed by 1-hexanol with selected nitro-compounds and substituted benzenes at 95.6 kPa
rhol	916.40	kg/m3	313.15 Effect of temperature on ultrasonic velocity and thermodynamic parameters of bisphenol-C-formaldehyde-acrylate resin solutions
rhol	919.70	kg/m3	308.15 Effect of temperature on ultrasonic velocity and thermodynamic parameters of bisphenol-C-formaldehyde-acrylate resin solutions
rhol	927.20	kg/m3	303.15 Effect of temperature on ultrasonic velocity and thermodynamic parameters of bisphenol-C-formaldehyde-acrylate resin solutions
rhol	943.81	kg/m3	298.15 Liquid liquid equilibrium in ternary systems N,N-dimethylformamide + 2-methylpentane + methanol and N,N-dimethylformamide + methylcyclohexane + methanol
rhol	943.81	kg/m3	298.15 Revision of the volumetric method for measurements of liquid equilibria in binary systems
rhol	932.50	kg/m3	313.15 Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data

rhol	935.70	kg/m3	308.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data	
rhol	941.90	kg/m3	303.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data	
rhol	950.10	kg/m3	298.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data	
rhol	955.10	kg/m3	293.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data	
rhol	934.69	kg/m3	308.15	Physicochemical Properties for the Binary Systems of Ionic Liquids [Cnmim]CI + N,N-Dimethylformamic	de
rhol	944.65	kg/m3	298.15 iron(III)-N,N'-e	Solution thermodynamics of thylene-bis(salicylidene in binary mixtures of N,N-dimethylformamic and acetonitrile at T = (298.15, 303.15, 308.15 and 313.15) K	

rhol	958.08	kg/m3	283.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. I. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in N,N-Dimethylformamide
sfust	41.80	J/mol×K	212.85	NIST Webbook
speedsl	1457.13	m/s	298.15	Apparent Molar Compressibilities and Volumes of Some 1,1-Electrolytes in N,N-Dimethylacetamide and N,N-Dimethylformamide
speedsl	1460.20	m/s	298.15	Compressibility Studies of Binary Solutions Involving Water as a Solute in Nonaqueous Solvents at T) 298.15 K
speedsl	1457.49	m/s	298.15	Isentropic compressibilities of (amide + water) mixtures: A comparative study
speedsl	1419.04	m/s	308.15 1-F	Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K
speedsl	1438.38	m/s	303.15 1-F	Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K

speedsl	1457.81	m/s	298.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K
speedsl	1477.27	m/s	293.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K
speedsl	1496.60	m/s	288.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K
speedsl	1457.13	m/s	298.15 Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. V. Apparent Molar Volumes and Compressibilities of Divalent Transition Metal Bromides in N,N-Dimethylformamide
srf	0.04	N/m	283.15 Thermodynamic investigation of N,N-dimethylformamide/toluene binary mixtures in the temperature range from 278.15 to 293.15

srf	0.04	N/m	293.15 Thermodynamic investigation of N,N-dimethylformamide/toluene binary mixtures in the temperature range from 278.15 to 293.15
srf	0.04	N/m	277.85 Surface Tension of Pure Liquids and Binary Liquid Mixtures
srf	0.04	N/m	287.81 Surface Tension of Pure Liquids and Binary Liquid Mixtures
srf	0.04	N/m	297.82 Surface Tension of Pure Liquids and Binary Liquid Mixtures
srf	0.03	N/m	307.86 Surface Tension of Pure Liquids and Binary Liquid Mixtures
srf	0.03	N/m	317.86 Surface Tension of Pure Liquids and Binary Liquid Mixtures
srf	0.03	N/m	327.88 Surface Tension of Pure Liquids and Binary Liquid Mixtures
srf	0.03	N/m	327.89 Surface Tension of Pure Liquids and Binary Liquid Mixtures
srf	0.04	N/m	278.15 Thermodynamic investigation of N,N-dimethylformamide/toluene binary mixtures in the temperature range from 278.15 to 293.15

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.46587e+01
Coeff. B	-3.67936e+03
Coeff. C	-5.96930e+01

Temperature range (K), min.	315.72
Temperature range (K), max.	649.60

Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	1.59178e+02
Coeff. B	-1.14422e+04
Coeff. C	-2.15502e+01
Coeff. D	1.49998e-05
Temperature range (K), min.	212.72
Temperature range (K), max.	647.00

Datasets

Mass density, kg/m3

Temperature, K - Liquid	Pressure, kPa - Liquid	Mass density, kg/m3 - Liquid
298.15	85.90	944.53
Reference	h	https://www.doi.org/10.1016/j.fluid.2013.05.022

Temperature, K	Pressure, kPa	Mass density, kg/m3
313.12	1008.00	930.41
313.12	2010.00	931.09
313.12	3012.00	931.73
313.12	4008.00	932.38
313.12	5004.00	933.04
313.12	6002.00	933.68
313.12	7002.00	934.32
313.12	8004.00	934.97
313.12	9000.00	935.62
313.12	10004.00	936.27
313.12	11004.00	936.89
313.12	12004.00	937.51
313.12	13005.00	938.14
313.12	14007.00	938.78

313.12 313.12 313.12	15002.00 16012.00	939.37
	16012.00	040.0
313 12		940.0
313.12	17009.00	940.59
313.12	18015.00	941.19
313.12	19010.00	941.79
313.12	20013.00	942.42
313.12	21009.00	942.99
313.12	22011.00	943.58
313.12	23019.00	944.17
313.12	24013.00	944.75
313.12	25011.00	945.35
323.06	1014.00	920.89
323.06	2007.00	921.59
323.06	3026.00	922.27
323.06	4006.00	922.95
323.06	5016.00	923.62
323.06	6010.00	924.3
323.06	7006.00	924.99
323.06	8010.00	925.64
323.06	9012.00	926.32
323.06	10014.00	926.99
323.06	11011.00	927.65
323.06	12013.00	928.31
323.06	13007.00	928.97
323.06	14011.00	929.62
323.06	15008.00	930.29
323.06	16014.00	930.92
323.06	17004.00	931.54
323.06	18006.00	932.19
323.06	19006.00	932.82
323.06	20005.00	933.44
323.06	21002.00	934.07
323.06	22013.00	934.7
323.06	23015.00	935.31
323.06	24008.00	935.92
323.06	25012.00	936.53
333.00	1008.00	911.34
333.00	2018.00	912.08
333.00	3006.00	912.78
333.00	4005.00	913.51
333.00	5005.00	914.23
333.00	6008.00	914.97
333.00	7003.00	915.68
333.00	8009.00	916.39

333.00	9010.00	917.11
333.00	10008.00	917.81
333.00	11008.00	918.51
333.00	12008.00	919.2
333.00	13013.00	919.9
333.00	14006.00	920.57
333.00	15007.00	921.24
333.00	16011.00	921.92
333.00	17019.00	922.59
333.00	18010.00	923.27
333.00	19004.00	923.91
333.00	20012.00	924.58
333.00	21005.00	925.24
333.00	22005.00	925.88
333.00	23014.00	926.52
333.00	24009.00	927.19
333.00	25009.00	927.83
342.86	1028.00	901.52
342.86	2020.00	902.3
342.86	3015.00	903.09
342.86	4002.00	903.84
342.86	5035.00	904.63
342.86	6026.00	905.39
342.86	7013.00	906.13
342.86	8017.00	906.89
342.86	9024.00	907.66
342.86	10012.00	908.38
342.86	11048.00	909.14
342.86	11999.00	909.83
342.86	13018.00	910.6
342.86	14029.00	911.32
342.86	15007.00	912.03
342.86	15994.00	912.71
342.86	17041.00	913.47
342.86	18012.00	914.16
342.86	19006.00	914.85
342.86	20042.00	915.55
342.86	21025.00	916.22
342.86	22008.00	916.9
342.86	23079.00	917.63
342.86	24008.00	918.25
342.86	25017.00	918.93
352.80	1040.00	891.76
352.80	2009.00	892.57

352.80 352.80 352.80 352.80 352.80	3011.00 4020.00 5050.00 6060.00	893.41 894.22 895.06
352.80 352.80	5050.00	
352.80		895.06
	6060.00	
352.80	0000.00	895.78
	6996.00	896.53
352.80	8008.00	897.34
352.80	9034.00	898.16
352.80	10019.00	898.93
352.80	11043.00	899.73
352.80	11998.00	900.45
352.80	13028.00	901.24
352.80	14015.00	901.99
352.80	15028.00	902.74
352.80	16000.00	903.48
352.80	17011.00	904.23
352.80	17999.00	904.96
352.80	19044.00	905.73
352.80	20050.00	906.43
352.80	21038.00	907.16
352.80	21955.00	907.8
352.80	23009.00	908.57
352.80	23996.00	909.27
352.80	25056.00	910.04
362.67	1058.00	882.04
362.67	2038.00	882.89
362.67	3044.00	883.77
362.67	4027.00	884.62
362.67	5068.00	885.54
362.67	6036.00	886.37
362.67	7025.00	887.22
362.67	8027.00	888.03
362.67	9045.00	888.9
362.67	10021.00	889.71
362.67	11024.00	890.55
362.67	11996.00	891.3
362.67	13061.00	892.19
362.67	14027.00	892.95
362.67	15025.00	893.73
362.67	15987.00	894.49
362.67	17050.00	895.32
362.67	18009.00	896.08
362.67	19041.00	896.85
362.67	20032.00	897.62
362.67	21035.00	898.36

362.67	22014.00	899.1
362.67	23018.00	899.87
362.67	24007.00	900.58
362.67	25016.00	901.35

Reference

https://www.doi.org/10.1021/je050050p

Temperature, K	Pressure, kPa	Mass density, kg/m3
288.15	100.00	953.4
288.15	2100.00	954.5
288.15	4000.00	955.6
288.15	6100.00	956.8
288.15	7900.00	957.8
288.15	9900.00	958.9
288.15	12100.00	960.1
288.15	14000.00	961.2
288.15	16000.00	962.2
288.15	18000.00	963.3
288.15	19800.00	964.3
298.15	100.00	943.8
298.15	2000.00	945.0
298.15	4100.00	946.2
298.15	6100.00	947.4
298.15	8100.00	948.6
298.15	10100.00	949.8
298.15	12100.00	951.0
298.15	14100.00	952.1
298.15	16300.00	953.3
298.15	18300.00	954.3
298.15	20100.00	955.5
308.15	100.00	935.0
308.15	2000.00	936.2
308.15	4100.00	937.6
308.15	6100.00	938.9
308.15	8100.00	940.0
308.15	10100.00	941.2
308.15	12100.00	942.5
308.15	14300.00	943.7
308.15	16300.00	944.9
308.15	18300.00	946.0
308.15	20200.00	947.0
318.15	100.00	925.5
318.15	2100.00	926.9

4000.00	928.3
6000.00	929.6
7900.00	930.8
10200.00	932.2
12000.00	933.4
14000.00	934.5
16000.00	935.8
18000.00	937.0
20200.00	938.1
	6000.00 7900.00 10200.00 12000.00 14000.00 16000.00 18000.00

Reference

https://www.doi.org/10.1021/je700096m

Sources

https://www.doi.org/10.1016/j.fluid.2014.01.00
of1,1,1,3,3-pentafluoropropane +
Inflection in the properties of the prop Vapor-liquid equilibrium measurement https://www.doi.org/10.1016/j.fluid.2014.01.007 https://www.doi.org/10.1016/j.fluid.2007.08.006 https://www.doi.org/10.1021/je400388j https://www.doi.org/10.1021/je400388j https://www.doi.org/10.1016/j.tca.2014.7 https://www.doi.org/10.1016/j.tca.2014.7 https://www.doi.org/10.1016/j.tca.2014.7 https://www.doi.org/10.1016/j.tca.2014.7 https://www.doi.org/10.1016/j.tca.2014.7 https://www.doi.org/10.1016/j.fluid.2015 https://www.doi.org/10.1016/j.fluid.2015 https://www.doi.org/10.1021/je060348v https://www.doi.org/10.1021/je060348v https://www.doi.org/10.1021/je060348v https://www.doi.org/10.1021/je060454x https://www https://www.doi.org/10.1016/j.tca.2014.11.010 https://www.doi.org/10.1016/j.fluid.2015.09.039 https://www.doi.org/10.1021/acs.jced.5b00135 Themibyer the Celeves is and Viscosity of Diethylene Glycol Monoethyl Ether + Notwolithylene Glycol Monoethyl Monoethylene Glycol Monoethyl Monoethylene Glycol Monoethyl Monoethylene Glycol Monoethylene Gly **Plus**

Isopropanol/Methanol/n-Propanol/Ethanol:

Isothermal Vapor-Liquid Equilibrium Data of 1,1,1,2-Tetrafluoroethane | https://www.doi.org/10.1021/je3013793 |
| waspurejpents of an Ditterpetite pet the properties of the (ROTHER MADYABER / HIGHIGH FAU DIOMF) including the near critical regions of Historia from the first of property of the first of the f Welycopie Syppacticop Binardioxane, Solubility and Solvent Effect of 1-(2-Bromo-phenyl)-pyrrole-2,5-dione in ଦେନସ୍ୟକ୍ତେମ୍ବର୍ଣ୍ଣାରେ ମଧ୍ୟକ୍ତେମ୍ବର ନିର୍ମ୍ଦର ଓଅଞ୍ଚ.15 ketraphenylborate, Ferraphenylborate, The state of the s {Propylene Glycol Methyl Ether Acetate + N,N-Dimethylformamide} at p = 30.0,

50.0, and 70.0 kPa:

https://www.doi.org/10.1021/je900440t https://www.doi.org/10.1021/je3013793 https://www.doi.org/10.1021/je400803f https://www.doi.org/10.1021/acs.jced.9b00560 https://www.doi.org/10.1021/je300252d https://www.doi.org/10.1016/j.jct.2017.07.016 https://www.doi.org/10.1021/je050440b https://www.doi.org/10.1016/j.jct.2007.06.017 https://www.doi.org/10.1016/j.fluid.2013.07.034 https://www.doi.org/10.1021/acs.jced.5b00655 https://www.doi.org/10.1016/j.fluid.2016.12.012 https://www.doi.org/10.1021/acs.jced.8b00416 https://www.doi.org/10.1021/acs.jced.6b00496 https://www.doi.org/10.1016/j.fluid.2009.01.006

```
Solubilities of
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.5b00092
   5,10,15,20-Tetraphenylporphyrin and 5,10,15,20-Tetra(p-chlorophenyl)porphyrintps://www.doi.org/10.1021/je2006117

N. W. Reis (2, puriotyles hyroidannid 2 diiminoethane https://www.doi.org/10.1016/j.jct.2005.0

THE HAD BEEN SERVICE TO THE HAD BEEN
                                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1016/j.jct.2005.07.012
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2017.02.008
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2011.06.011
  (27835916-378) (1851) (1851) (1851) and aksperior of solutions of binary historise of binary historise of the solutions of binary historise of the solution of
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2007.02.007
                                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1016/j.jct.2019.06.026
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2016.02.006
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je900733j
Histories of Tibunyodynathianiewidezone in Chloride + nanerhaterodynathianiewidezone in Chloride + nanerhaterodynathianiewidezone in Chloride + nanerhaterodynathianiewide on partial of the banking the convenience of the solution of the so
       Tiburypdynamiciayidazonum Chloride +
                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.jct.2018.06.006
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2006.01.015
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2018.02.002
                                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/acs.jced.6b00009
                                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1016/j.fluid.2014.01.008
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2006.07.017
                                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/je050428j
                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1021/acs.jced.7b00002
                                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/je500035r
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je201349k
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2012.08.008
                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.fluid.2007.03.010
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je500447r
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je700426k
                                                                                                                                                                                                                                                                                                                   http://pubs.acs.org/doi/abs/10.1021/ci990307l
The models for determination of solid liquid solumbility models for determination of solid liquid solumbility models first and precent ising of which solves allowed solumbility models solutions and solutions and solutions and solutions solves solves solutions and solutions solves s
      Solvents at 298-15 Kills for
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2016.12.002
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2014.01.020
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.5b00753
   Halbatoleaneu Dilution of Cannie y annie y annie https://www.doi.org/10.1021/je300783e in. by Alice in pure and in
                                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1016/j.fluid.2014.12.020
      Auxincedionalenap(27veres-sousids)and
                                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/je0201323
     Binary Liquid Mixtures:
Equilibrium Solubility of Biapenem in
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.8b01051
  Equilibrium Solubility of Biapenem in Different Neat and Binary Solvents: Bश्रिक्षेश्रीमध्यसम्प्रिति होता प्रकार के अपने के अ
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.6b00646
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2016.02.016
                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.7b00444
```

(N,N-Dimethylformamidé) Mixtures:

```
https://www.doi.org/10.1021/je060329l
4-(3,4-Dichlorophenyl)-1-tetralone in
                                                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.fluid.2005.09.025
                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1007/s10765-016-2096-3
                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.fluid.2004.12.004
                                                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1021/acs.jced.5b00782
                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.fluid.2015.01.019
                                                                                                                                                                                                                                                                                                                               https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1377
   Dreferential solvation of allopurinol in a hassocy to assist of anxide estimine at the transfer of anxide estimine at the transfer of anxide estimine at the transfer of the t
                                                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.fluid.2019.112283
                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/je500068b
                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/je049953t
                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/acs.jced.5b00802
                                                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1021/je100369a
                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je050242k
                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.fluid.2017.12.035
                                                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.jct.2013.02.010
       hinacutablicultresion sulfoxide p.water)

SOLUTION SULFOXIDE SULFOXIDA SULFOXIDE SULFOXIDA SULFO
  THE PROPERTY OF THE PROPERTY O
                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/je060301+
                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/je0504515
                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.jct.2007.01.017
                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/je8001046
                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.fluid.2009.04.009
                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.fluid.2018.12.008
     methanovoventhe entire introllity
have relevente entire introllity
have relevente entire introllity
have relevente entire internal platarate
tention entire entire internal platarate
tention entire entire internal platarate
tention entire en
                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/je0601098
                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.fluid.2008.01.028
                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.fluid.2008.07.018
  kinistinanesi pient 288 d stesses Gibbs energy of binary mixtures of National Mode into Selected didistiones all unitarity in entranglement and correlation iron(III)-N,N'-ethylene-bis(salicylideneiminato)-chloride solvens in the mixed into Selected into Selected didistiones and correlation iron(III)-N,N'-ethylene-bis(salicylideneiminato)-chloride solvens into Selected into Sele
```

Solubility of

2-Ethyl-1-hexanol:

Densities, ultrasonic speeds and https://www.doi.org/10.1016/j.jct.2016.07.032 refractive indices of phenetole with solverilities of phenetole station in the station of the solverilities of t refractive indices of phenetole with 2-Cyanoguanidine in Water + Exparimentalisolybility evaluation and https://www.doi.org/10.1016/j.jct.2018.11.021 चिम्हास स्ट्राइन । उन्हार । अन्य । https://www.doi.org/10.1021/je049610v https://www.doi.org/10.1021/acs.jced.9b00172 https://www.doi.org/10.1021/acs.jced.9b00065 https://www.doi.org/10.1021/acs.jced.9b00385 https://www.doi.org/10.1016/j.fluid.2016.04.007 https://www.doi.org/10.1021/acs.jced.8b00902 Solubility of Gatmoxacin in 12 Pure Selvenity for Atmoxacin in 12 Pure Selvenity for Atmoxacin in 12 Pure In 15 Pure In 1 https://www.doi.org/10.1021/acs.jced.9b00258 https://www.doi.org/10.1021/je060113j https://www.doi.org/10.1016/j.fluid.2013.07.010 https://www.doi.org/10.1016/j.jct.2019.04.001
flubendazole dissolved in aqueous

Sovanativa intuly of physicochemical
Briennie and pointry mixtures of
National International Internatio https://www.doi.org/10.1016/j.jct.2019.04.001 **Name** is a time to full the little of the l https://www.doi.org/10.1016/j.tca.2005.11.035 1-bromoadamantane in binary mixtures https://www.doi.org/10.1016/j.tca.2009.05.007 รักฟิลโอเอรอย์เหตุยอเพื่อสู่เอก of N,N-dialkyl monamides at 298.15K: Thermodynamic properties of ionic https://www.doi.org/10.1016/j.tca.2011.10.009 Intermodynamic properties of ionic liquid, 1-hexyl-3-methylimidazolum Meanuement of the Solubility of https://www.doi.org/10.1016/j.tca.2011.10.009 https://www.doi.org/10.1021/acs.jced.9b00353 https://www.doi.org/10.1016/j.jct.2016.08.021 https://www.doi.org/10.1016/j.jct.2016.08.021 https://www.doi.org/10.1021/acs.jced.8b00009 https://www.doi.org/10.1021/acs.jced.8b00009 https://www.doi.org/10.1016/j.jct.2007.05.015 major printings: A comparative study: Solubility Modeling and Solvent Effect for Flubendazole in 12 Neat Solvents: for Flubendazole in 12 Neat Solvents: Solubility Modeling and Solution https://www.doi.org/10.1021/acs.jced.8b00719 Thermodynamics of 4-Amino-2,6-Dimethoxypyrimidine in Cosolvent Mixtures of Methanol,

Ethanol, Isopropanol, and N,N-Dimethylformamide + Water:

Solubility determination and https://www.doi.org/10.1016/j.jct.2016.07.013 Solubility determination and thermodynamic modelling of leniphinadinal engage in methogolnic griphines with aceteristies to 318.15) K SOLUTION TO THE TENENT OF THE TENENT https://www.doi.org/10.1016/j.jct.2014.02.021 https://www.doi.org/10.1021/je900367v https://www.doi.org/10.1016/j.fluid.2014.01.046 http://webbook.nist.gov/cgi/cbook.cgi?ID=C68122&Units=SI Methanol, N.N. Dimethylacetamide, and Compressibilities at Pressures up to 20 Improphylacetamide and compressibilities at Pressures up to 20 Improphylacetamide and compressibilities at Pressures up to 20 Improphylacetamide for solubility of froitnahattaldehyde in the first of t the state of the control of the cont https://www.doi.org/10.1016/j.fluid.2016.08.033 https://www.doi.org/10.1016/j.fluid.2015.03.039 https://www.doi.org/10.1016/j.fluid.2005.12.006 https://www.doi.org/10.1016/j.fluid.2010.01.002 https://www.doi.org/10.1016/j.fluid.2013.09.042 https://www.doi.org/10.1016/j.fluid.2010.08.010 https://www.doi.org/10.1016/j.fluid.2014.04.019 https://www.doi.org/10.1016/j.fluid.2006.12.010 Acetone, Methanol, Ethanol, Rollubility the Methanol, Replacement of the Methanol, Replacement of the Methanol, Replacement of the Methanol, Replacement of the Methanol of th https://www.doi.org/10.1016/j.jct.2016.10.019 N,N-dimethylformamide) + methanol} from T = (283.15 to 318.15) K:

Experimental determination and thermodynamic modelling:

```
Solubility and Dissolution
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/je400714f
       Thermodynamic Data of Mefenamic
    Assuic Listain Enpilleriere (Classes of the printer of the printer
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/je400635d
                                                                                                                                                                                                                                                                                                        https://www.chemeo.com/doc/models/crippen_log10ws
      N.N-Dimethylformamide + Ammonium
Findermal gapor-liquid equilibrium
measurements and assessments of
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2015.08.003
  measurements and assessments of sqlybilitis measurements at the square of sqlybilitis measurements of sqlybilitis of sqlybi
                                                                                                                                                                                                                                                                                                        https://www.cheric.org/files/research/kdb/mol/mol1377.mol
                                                                                                                                                                                                                                                                                                         https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
Thermo-acoustical studies of 1.3.4-oxadiazole as binary mixture at threselfing of their moral process of 1.3.4-oxadiazole as binary mixture at threselfing of their moral process of 1.3.4-oxadiazole as binary mixture at threselfing of their moral process of 1.3.4-oxadiazole as binary mixture at threselfing of their moral process of 1.3.4-oxadiazole as binary mixture at threselfing of their moral process of 1.3.4-oxadiazole as binary mixture at threselfing of their moral process of 1.3.4-oxadiazole as binary mixture at threselfing of their moral process of 1.3.4-oxadiazole as binary mixture at threselfing of their moral process of 1.3.4-oxadiazole as binary mixture at threselfing of their moral process of 1.3.4-oxadiazole as binary mixture at threselfing of their moral process of 1.3.4-oxadiazole as binary mixture at threselfing of their moral process of 1.3.4-oxadiazole as binary mixture at threselfing of their moral process of 1.3.4-oxadiazole as binary mixture at threselfing of their moral process of 1.3.4-oxadiazole as binary mixture at threselfing of their moral process of 1.3.4-oxadiazole as binary mixture at threselfing of their moral process of 1.3.4-oxadiazole as binary mixture at threselfing of their moral process of 1.3.4-oxadiazole as binary mixture at threselfing of their moral process of 1.3.4-oxadiazole as binary mixtures and their moral process of 1.3.4-oxadiazole as binary mixtures and their moral process of 1.3.4-oxadiazole as binary mixtures and their moral process of 1.3.4-oxadiazole as binary mixtures and their moral process of 1.3.4-oxadiazole as binary mixtures and the process of 1.3.4-oxadiazole and as a process of 1.3.4-oxadiazole as binary mixtures and the process
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1007/s10765-009-0648-5
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2015.01.012
                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1016/j.fluid.2008.09.010
      รถางสาหารystem heptane + toluene +
ฟาพร์เท็คสเคตุการคล่าสหากอะrties of binary
mixtures of N,N-dimethylformamide
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2012.11.015
    mixtures of N,N-dimethylformamide Sollwhite Monager on and There and a partition of the condition of the con
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/acs.jced.6b00230
                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.jct.2010.10.014
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/je500801w
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2016.07.048
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2016.11.017
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/acs.jced.9b00543
      https://www.doi.org/10.1021/je050209y
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/je020135f
      https://www.doi.org/10.1021/acs.jced.8b00430
https://www.doi.org/10.1021/acs.jced.8b00430
https://www.doi.org/10.1021/acs.jced.8b00430
https://www.doi.org/10.1021/acs.jced.8b00430
https://www.doi.org/10.1021/acs.jced.8b00430
```

96.15 kPa:

Solubility Data for Roflumilast and https://www.doi.org/10.1021/acs.jced.9b00710 Maraviroc in Various Solvents between Surface Teggs (2) Find Surface https://www.doi.org/10.1021/je9002114 Properties of Binary Mixtures of Properties of Mixtures of Interview mixtures of (methanol + ethyl acetate) at lectory item for a chain length on the viscosity and surface tension of Splary systems, while proceeding the process of the process of the viscosity and surface tension of Splary systems, while process of the process of https://www.doi.org/10.1016/j.jct.2014.03.022 https://www.doi.org/10.1021/acs.jced.8b00120 Systems, Water + ទីទាំបុង្គម៉ែះស្គាត់តែស្រែព្រក្សាម្នាជ់ងុឌមែនអំពេញគ្នេ https://www.doi.org/10.1021/je3001188 ipd. ប្រជាព្យាធិប្បតិប្រជុំ ក្រុម ស្គ្រាជាមិន ១៤ 5 K. N.N-dimethyllorimamide + aliphatic https://www.doi.org/10.1016/j.jct.2005.01.002 N.N.-dimethylformamide + aliphatic themseigs artely becamines of anging from the princips of anging from the princips of anging from the princips of an article and provide a second themselves of a sale of a https://www.doi.org/10.1021/je700755t https://www.doi.org/10.1016/j.jct.2019.07.001 http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1021/je8001877 https://www.doi.org/10.1021/acs.jced.8b00989 https://www.doi.org/10.1016/j.jct.2014.12.002 https://www.doi.org/10.1021/je500696p https://www.doi.org/10.1021/je200872n https://www.doi.org/10.1016/j.jct.2017.07.023 https://www.doi.org/10.1016/j.fluid.2008.01.020 sevenor or adenessies plangeously givilles of mod ampetry formanide, which was the source of the sou https://www.doi.org/10.1021/je060224i https://www.doi.org/10.1021/je201128n https://www.doi.org/10.1021/je500113q https://www.doi.org/10.1016/j.tca.2014.05.004
Excess Gibbs Energy of Activation for Visegesy-row/rea pinkar/Matterentary
N. Al-Disselby in paragricular of the properties in https://www.doi.org/10.1021/je300608v
https://www.doi.org/10.1021/je5004466
https://www.doi.org/10.1021/je5004466
https://www.doi.org/10.1021/je5004466
https://www.doi.org/10.1016/j.jct.2018.07.025
https://www.doi.org/10.1016/j.jct.2018.07.025
https://www.doi.org/10.1021/je700453v
https://www.doi.org/10.1021/je700453v
https://www.doi.org/10.1021/je700453v
https://www.doi.org/10.1016/j.fluid.2007.02.02
https://www.doi.org/10.1016/j.fluid.2007.02.02
https://www.doi.org/10.1016/j.jct.2018.07.025
https://www.doi.org/10.1016/j.jct.2018.07.025
https://www.doi.org/10.1021/je700453v
https://www.doi.org/10.1016/j.jct.2005.09.001
agg spectroscopic properties in https://www.doi.org/10.1016/j.tca.2014.05.004 https://www.doi.org/10.1021/acs.jced.9b00471 https://www.doi.org/10.1016/j.fluid.2007.02.026 and supertroscopic properties in Presented of and https://www.doi.org/10.1016/j.jct.2016.10.046 PARTITION OF THE PROPERTY OF T https://www.doi.org/10.1016/j.fluid.2005.03.014 Apparent Moyno Malames, and Elegatrical Scandisciplinary of the most of the mo https://www.doi.org/10.1016/j.fluid.2016.08.014 Wistures:308.15, 308.15, and 313.15) K: https://www.doi.org/10.1021/je300358u

Wistures:308.15, 308.15, and 313.15) https://www.doi.org/10.1021/je300358u

Wisture early being the firm annies with e

White the company of the company N,N-Dimethylformamide, N.N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to

323.15) K:

KDB Vapor Pressure Data:

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1377

Solubility modelling and

Solubility modelling and thermodynamic aspect of d-aspartic decidence of d-aspartic aspect of d-aspartic decidence of d-aspartic d-aspart

Benzetriazole in Different Pure Selvents of

,1-Diamino-2,2-dinitroethylene in RITE DIPERTURE OF FEETHYL proporties of bydwannicasids lidone: Enthalpies of Dilution of I-Alanine in

Dimethylsulfoxide + Water and by the state of the state o

DAMERTY MOTHER AND PRESENT WHITE A SYSTEM CONTAINING 2-octanone, HERBING CONTAINING 2-octanone, HERBING CONTAINING CONTAI

1-Chloro-2-ethylhexane, and 2-Ethyl-1-hexanol:

Legend

https://www.doi.org/10.1016/j.jct.2019.06.025

https://www.doi.org/10.1016/j.jct.2016.10.040

https://www.doi.org/10.1021/acs.jced.9b00229

https://www.doi.org/10.1021/je900370q

https://www.doi.org/10.1021/acs.jced.8b01265

https://www.doi.org/10.1021/acs.jced.7b01085

https://www.doi.org/10.1021/je900235s

https://www.doi.org/10.1016/j.jct.2012.03.020

https://www.doi.org/10.1021/je9005322

https://www.doi.org/10.1021/je049721u

https://www.doi.org/10.1021/acs.jced.8b01014

https://www.doi.org/10.1021/je800123c

Proton affinity affp: basg: Gas basicity

chl: Standard liquid enthalpy of combustion

Ideal gas heat capacity cpg: cpl: Liquid phase heat capacity

dvisc: Dynamic viscosity ea: Electron affinity

econd: Electrical conductivity

Standard Gibbs free energy of formation gf: hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions Enthalpy of fusion at a given temperature hfust:

hvap: Enthalpy of vaporization at standard conditions Enthalpy of vaporization at a given temperature hvapt:

ie: Ionization energy

Log10 of Water solubility in mol/l log10ws: logp: Octanol/Water partition coefficient mcvol: McGowan's characteristic volume

NFPA Fire Rating nfpaf: nfpah: NFPA Health Rating pc: Critical Pressure Vapor pressure pvap:

rfi: Refractive Index rhoc: Critical densityrhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

speedsl: Speed of sound in fluid

srf: Surface Tension

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/34-806-9/Formamide-N-N-dimethyl.pdf

Generated by Cheméo on 2024-04-28 21:47:22.911568641 +0000 UTC m=+16630091.832145951.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.