Methylene chloride

Other names:

Aerothene MM CH2Cl2 Chlorure de methylene DICHLOROMETHANE F 30 F 30 (chlorocarbon) FREON 30 **HCC 30** Khladon 30 METHYLENE DICHLORIDE Metaclen Methane dichloride Methane, dichloro-Methoklone Methylene bichloride Metylenu chlorek NCI-C50102 NSC 406122 Narkotil R 30 R-30 Rcra waste number U080 Salesthin Solaesthin Soleana VDA Solmethine UN 1593 InChI=1S/CH2CI2/c2-1-3/h1H2 YMWUJEATGCHHMB-UHFFFAOYSA-N CH2Cl2 CICCI 84.93 75-09-2

Physical Properties

Property code

Inchi:

CAS:

InchiKey:

Formula: SMILES:

Mol. weight [g/mol]:

af	0.1990		KDB
affp	628.00 ± 8.00	kJ/mol	NIST Webbook
basg	602.00 ± 8.00	kJ/mol	NIST Webbook
chl	-602.50	kJ/mol	NIST Webbook
chl	-605.80 ± 8.40	kJ/mol	NIST Webbook
dm	1.80	debye	KDB
gf	-68.91	kJ/mol	KDB
gyrad	2.4320		KDB
hf	-95.10 ± 2.50	kJ/mol	NIST Webbook
hf	-95.70 ± 1.30	kJ/mol	NIST Webbook
hf	-95.46	kJ/mol	KDB
hfl	-124.10 ± 2.50	kJ/mol	NIST Webbook
hfl	-124.30	kJ/mol	NIST Webbook
hfus	6.74	kJ/mol	Joback Method
hvap	29.03 ± 0.08	kJ/mol	NIST Webbook
hvap	28.80	kJ/mol	NIST Webbook
hvap	29.00	kJ/mol	NIST Webbook
hvap	29.00 28.50 ± 0.42	kJ/mol	NIST Webbook
	30.60 ± 0.10	kJ/mol	NIST Webbook
hvap ie	11.32 ± 0.01	eV	NIST Webbook
ie	11.32 ± 0.01 11.35 ± 0.02	eV	NIST Webbook
-	11.40	eV	NIST Webbook
ie	11.33 ± 0.04	eV	NIST Webbook
ie			
ie	11.40	eV	NIST Webbook
ie	11.32	eV	NIST Webbook
ie	11.28	eV	NIST Webbook
ie	11.33	eV	NIST Webbook
ie	11.36	eV	NIST Webbook
log10ws	-0.63		Aqueous Solubility Prediction Method
log10ws	-0.63		Estimated Solubility Method
logp	1.421		Crippen Method
mcvol	49.430	ml/mol	McGowan Method
nfpah	%!d(float64=2)		KDB
рс	6100.00	kPa	KDB
рс	6355.00 ± 15.00	kPa	NIST Webbook
rinpol	515.00		NIST Webbook
rinpol	520.00		NIST Webbook
rinpol	511.00		NIST Webbook
rinpol	527.00		NIST Webbook
rinpol	528.00		NIST Webbook
rinpol	529.00		NIST Webbook
rinpol	515.00		NIST Webbook
rinpol	519.00		NIST Webbook

rinpol	515.00	NIST Webbook
rinpol	515.00	NIST Webbook
rinpol	531.00	NIST Webbook
rinpol	514.00	NIST Webbook
rinpol	512.00	NIST Webbook
rinpol	528.00	NIST Webbook
rinpol	515.00	NIST Webbook
rinpol	504.00	NIST Webbook
rinpol	510.00	NIST Webbook
rinpol	527.00	NIST Webbook
rinpol	530.00	NIST Webbook
rinpol	524.00	NIST Webbook
rinpol	524.00	NIST Webbook
rinpol	515.00	NIST Webbook
rinpol	531.00	NIST Webbook
rinpol	511.00	NIST Webbook
rinpol	512.70	NIST Webbook
rinpol	531.00	NIST Webbook
rinpol	531.00	NIST Webbook
rinpol	488.00	NIST Webbook
rinpol	480.00	NIST Webbook
rinpol	520.00	NIST Webbook
rinpol	524.00	NIST Webbook
rinpol	531.60	NIST Webbook
rinpol	512.70	NIST Webbook
rinpol	510.00	NIST Webbook
rinpol	540.00	NIST Webbook
rinpol	540.00	NIST Webbook
rinpol	531.00	NIST Webbook
rinpol	513.00	NIST Webbook
rinpol	511.00	NIST Webbook
rinpol	477.00	NIST Webbook
rinpol	497.90	NIST Webbook
rinpol	524.00	NIST Webbook
rinpol	553.50	NIST Webbook
rinpol	518.00	NIST Webbook
rinpol	520.00	NIST Webbook
rinpol	519.00	NIST Webbook
rinpol	537.90	NIST Webbook
rinpol	516.50	NIST Webbook
rinpol	516.90	NIST Webbook
rinpol	508.00	NIST Webbook
rinpol	504.90	NIST Webbook
rinpol	518.00	NIST Webbook

rinpol	506.30		NIST Webbook
rinpol	542.20		NIST Webbook
rinpol	548.40		NIST Webbook
rinpol	553.70		NIST Webbook
rinpol	555.90		NIST Webbook
rinpol	537.80		NIST Webbook
rinpol	515.00		NIST Webbook
rinpol	486.00		NIST Webbook
ripol	933.00		NIST Webbook
ripol	933.00		NIST Webbook
ripol	919.00		NIST Webbook
ripol	925.00		NIST Webbook
ripol	928.00		NIST Webbook
ripol	912.00		NIST Webbook
ripol	912.00		NIST Webbook
ripol	933.00		NIST Webbook
ripol	914.00		NIST Webbook
·	917.00		NIST Webbook
ripol	937.20		NIST Webbook
ripol			
ripol	948.00		NIST Webbook
ripol	933.00		NIST Webbook
ripol	932.00		NIST Webbook
ripol	944.00		NIST Webbook
ripol	953.00		NIST Webbook
ripol	944.00		NIST Webbook
ripol	927.00		NIST Webbook
ripol	936.00		NIST Webbook
ripol	937.20		NIST Webbook
ripol	905.00		NIST Webbook
ripol	948.00		NIST Webbook
ripol	948.00		NIST Webbook
ripol	931.00		NIST Webbook
ripol	925.00		NIST Webbook
ripol	914.00		NIST Webbook
ripol	933.00		NIST Webbook
ripol	933.00		NIST Webbook
ripol	926.65		NIST Webbook
ripol	935.70		NIST Webbook
ripol	946.00		NIST Webbook
ripol	948.00		NIST Webbook
ripol	937.00		NIST Webbook
ripol	932.62		NIST Webbook
sl	174.50	J/mol×K	NIST Webbook
tb	312.95 ± 0.50	К	NIST Webbook

tb	313.15 ± 1.00	К	NIST Webbook
tb	313.20 ± 0.50	K	NIST Webbook
tb	313.20 ± 1.00	К	NIST Webbook
tb	312.92 ± 0.07	К	NIST Webbook
tb	312.95 ± 0.30	К	NIST Webbook
tb	314.70 ± 0.50	К	NIST Webbook
tb	314.95 ± 0.50	К	NIST Webbook
tb	313.00	К	NIST Webbook
tb	312.93 ± 0.20	К	NIST Webbook
tb	313.35 ± 0.20	К	NIST Webbook
tb	313.00	К	KDB
tb	313.30 ± 0.30	К	NIST Webbook
tc	510.00	К	NIST Webbook
tc	508.00 ± 0.20	К	NIST Webbook
tc	510.00	К	KDB
tf	176.65 ± 0.40	К	NIST Webbook
tf	177.00 ± 2.00	К	NIST Webbook
tf	198.06 ± 0.40	К	NIST Webbook
tf	177.62	К	Aqueous Solubility Prediction Method
tf	178.01	К	KDB
tf	176.00 ± 1.50	К	NIST Webbook
VC	0.190	m3/kmol	Joback Method
zra	0.26		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	57.56	J/mol×K	327.38	Joback Method
cpg	67.25	J/mol×K	478.55	Joback Method
cpg	65.49	J/mol×K	448.32	Joback Method
cpg	63.64	J/mol×K	418.08	Joback Method
cpg	61.71	J/mol×K	387.85	Joback Method
cpg	59.68	J/mol×K	357.61	Joback Method
cpg	55.35	J/mol×K	297.14	Joback Method
cpl	100.00	J/mol×K	298.10	NIST Webbook
cpl	102.30	J/mol×K	298.15	NIST Webbook
cpl	100.00	J/mol×K	298.00	NIST Webbook
cpl	129.30	J/mol×K	298.00	NIST Webbook
cpl	105.50	J/mol×K	303.20	NIST Webbook
cpl	100.50	J/mol×K	292.50	NIST Webbook

cpl	100.80	J/mol×K	292.50	NIST Webbook	
dvisc	0.0004912	Paxs	251.72	Joback Method	
dvisc	0.0006594	Paxs	229.00	Joback Method	
dvisc	0.0009444	Paxs	206.29	Joback Method	
dvisc	0.0014784	Paxs	183.58	Joback Method	
dvisc	0.0026264	Paxs	160.87	Joback Method	
dvisc	0.0003842	Paxs	274.43	Joback Method	
dvisc	0.0003120	Paxs	297.14	Joback Method	
hfust	6.16	kJ/mol	178.20	NIST Webbook	
hfust	6.16	kJ/mol	178.22	NIST Webbook	
hfust	6.16	kJ/mol	178.20	NIST Webbook	
hvapt	30.30	kJ/mol	287.50	NIST Webbook	
hvapt	29.00	kJ/mol	347.00	NIST Webbook	
hvapt	30.20	kJ/mol	273.00	NIST Webbook	
hvapt	29.40	kJ/mol	249.00	NIST Webbook	
hvapt	29.20	kJ/mol	308.00	NIST Webbook	
hvapt	28.06	kJ/mol	313.00	NIST Webbook	
pvap	85.33	kPa	308.17	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols	
рvар	90.66	kPa	309.82	(C1 - C4) Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
pvap	95.99	kPa	311.39	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
рvар	67.40	kPa	301.80	Effect of Dissolved Poly(lactic acid) on the Solubility of CO2, N2, and He Gases in Dichloromethane	
pvap	79.99	kPa	306.43	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	

рvар	45.70	kPa	291.90	Effect of Dissolved Poly(lactic acid) on the Solubility of CO2, N2, and He Gases in Dichloromethane	
рvар	37.10	kPa	287.00	Effect of Dissolved Poly(lactic acid) on the Solubility of CO2, N2, and He Gases in Dichloromethane	
рvар	197.94	kPa	333.15	Vapor Liquid Equilibrium and Excess Enthalpy Data for Systems Containing N,N-Dimethylacetamid	e
рvар	70.49	kPa	303.15	Total Vapor Pressure Measurements for 2-Ethoxyethanol with Carbon Tetrachloride, Chloroform, and Dichloromethane at 303.15 K	
рvар	74.66	kPa	304.61	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
рvар	69.33	kPa	302.67	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
рvар	63.99	kPa	300.61	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
рvар	34.66	kPa	285.89	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	

pvap	37.33	kPa	287.58	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
рvар	41.33	kPa	289.94	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
pvap	45.33	kPa	292.12	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
pvap	49.33	kPa	294.15	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
рvар	53.33	kPa	296.05	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
pvap	58.66	kPa	298.41	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
рvар	55.90	kPa	296.80	Effect of Dissolved Poly(lactic acid) on the Solubility of CO2, N2, and He Gases in Dichloromethane	
rfi	1.42370		293.15	Solubilities of Some Phosphaspirocyclic Compounds in Selected Solvents	

rfi	1.42370		293.15 Solubilities of Phosphorus-Containing Compounds in Selected Solvents
rfi	1.42760		288.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.42510		293.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.42190		298.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.43050		283.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rhol	1307.51	kg/m3	303.15 Volumetric properties of binary liquid mixtures: Application of the Prigogine Flory Patterson theory to excess molar volumes of dichloromethane with benzene or toluene
rhol	1325.67	kg/m3	293.15 Volumetric properties of dichloromethane with aniline or nitrobenzene at different temperatures: A theoretical and experimental study

rhol	1334.81	kg/m3	288.15	Volumetric properties of dichloromethane with aniline or nitrobenzene at different temperatures: A theoretical and experimental study	
rhol	1317.00	kg/m3	298.00	KDB	
rhol	1316.58	kg/m3	298.15	Volumetric properties of dichloromethane with aniline or nitrobenzene at different temperatures: A theoretical and experimental study	
rhol	1307.90	kg/m3	303.15	Volumetric properties of dichloromethane with aniline or nitrobenzene at different temperatures: A theoretical and experimental study	
rhol	1334.08	kg/m3	288.15	Volumetric properties of binary liquid mixtures: Application of the Prigogine Flory Patterson theory to excess molar volumes of dichloromethane with benzene or toluene	
rhol	1325.79	kg/m3	293.15	Volumetric properties of binary liquid mixtures: Application of the Prigogine Flory Patterson theory to excess molar volumes of dichloromethane with benzene or toluene	
rhol	1327.00	kg/m3	293.15	Interfacial Properties, Densities, and Contact Angles of Task Specific Ionic Liquids	

rhol	1307.60	kg/m3	303.15	Viscosity and Density for Binary Mixtures of Carbon Tetrachloride + Chloroform, Carbon Tetrachloride + Dichloromethane, and Chloroform + Dichloromethane and One Ternary Mixture of Chloroform + 1:1 (Carbon Tetrachloride + Dichloromethane) at 303.15 K	
rhol	1316.75	kg/m3	298.15	Volumetric properties of binary liquid mixtures: Application of the Prigogine Flory Patterson theory to excess molar volumes of dichloromethane with benzene or toluene	
srf	0.03	N/m	293.20	KDB	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbp	313.25	К	96.60	Low cost apparatus for rapid boiling point determination of small air sensitive samples under inert atmosphere

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.43555e+01

Coeff. B	-2.65134e+03
Coeff. C	-4.07080e+01
Temperature range (K), min.	229.18
Temperature range (K), max.	510.00

Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C^*ln(T) + D^*T^2$
Coeff. A	8.08779e+01
Coeff. B	-6.03061e+03
Coeff. C	-1.00863e+01
Coeff. D	9.81251e-06
Temperature range (K), min.	178.01
Temperature range (K), max.	510.00

Sources

Solubilities of Rutaecarpin Organic Solvents from (28 High Pressure Phase Equi for the Ternary System Co Unboln Elevine Carlona Dinaide of Some Carlon Solubilities of Rutaecarpi

Solubility of Acephate in Solvents from (292.90 to 3 Measurement and Correla Measurement and Correlat Solubility of Tetraphenyl Measurement and Gorrelat Solubility of Tetraphenyl Measurement and Gorrelat Robustion of A.S. yanoaceta Pater Sunains and Acamala Barrantic Sunains and Acamala Barrantic Sunains and Acamala Composition of Sunains Composition of Suna and 1,2-Dichlorobenzene:

ne in Twelve	https://www.doi.org/10.1021/je4001334
83.2 to 323.2) illibrium Data	https://www.doi.org/10.1021/acs.jced.8b01017
ontaining Hide framebriad	https://www.doi.org/10.1021/je0498560
+ Organic Coefficients	https://www.doi.org/10.1021/acs.jced.8b00080
anic Solutes in ganic	https://www.doi.org/10.1021/je200822w
Wiinid zolium	https://www.doi.org/10.1021/je020067x
hloride + ichloride +	http://webbook.nist.gov/cgi/cbook.cgi?ID=C75092&Units=SI
loroform + bilitynary	https://www.doi.org/10.1016/j.tca.2012.06.025
entropy of Geetfictents Egnane) at	https://www.doi.org/10.1021/acs.jced.8b00635
inviten filletion	https://www.doi.org/10.1021/je700640r
fazite Dilution	https://www.doi.org/10.1021/je900704b
Gas Liquid	https://www.doi.org/10.1021/je200252c
apor	https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
	http://pubs.acs.org/doi/abs/10.1021/ci990307I
Different 327.60) K:	https://www.doi.org/10.1021/je0603630
ation of	https://www.doi.org/10.1021/je500678z
bironateha amide in 14	https://www.doi.org/10.1021/acs.jced.8b01205
lata for the	https://www.doi.org/10.1016/j.fluid.2015.02.022
ical study of	https://www.doi.org/10.1016/j.fluid.2014.06.021
aCI system: or ternary	https://www.doi.org/10.1016/j.jct.2015.08.016
Ringenane +	https://www.doi.org/10.1016/j.jct.2015.02.023
omethane + Apronettane	https://www.doi.org/10.1016/j.jct.2007.01.004
ography: Na26 NinhiFSI	https://www.doi.org/10.1021/acs.jced.8b00590
erenitrile, hloroethane,	

Phase Behavior, Densities, and Isothermal Compressibility of the CO2 E XEGASA OF A IDICIAS OF A UNITARY OT A UNITARY Southing of the second Selubelity Measurement and Thermodynamic Modeling for Sciubilityesud GravetaleSize of Sivelingus https://www.doi.org/10.1021/je100626x in Different Organic Solvents: Solid Liquid Phase Equilibria of Solid Liquid Phase Equilibria of https://www.doi.c N,N'-[1,3-Phenylenebis(methylene)]bis(phosphoramidic Soluditip: Dissolution Properties ACBeity cheetilicinate relation to Reduction bits://www.doi.c Solution Properties ACBeity cheetilicinate relation bits://www.doi.c Solution Properties ACBeity cheetilicinate relation bits://www.doi.c Tetrafluoroporate Using Gas-Liquid Enductivities of Binary Mixtures of Ionic Liquids with Polar Solvents: Thermodynamic Properties of Mixtures https://www.doi.org/10.1021/je060033f Containing Ionic Liquids: Activity BEUMEN GRETACION IN LOT UNION DI UTION A start of the second star Trifluoromethanesulfonate Using Gas Piddidu monatography: Bis(trifluoromethanesulfonyl)amide-Based Contracting and the second sec 278513145 3030409/01/22010001105 101Selected Control of Polar Solutes in
Pattition of Polar Solutes in
Pattition and some selected control of Polar Solutes in
Pattition of Polar Solutes in< of a CDECOMPTIGENTIAT.15 K:
Activity coefficients at infinite dilution
of organic solutes in
(Solig) Sufficients at infinite dilution
of organic solutes at infinite dilution of
Sufficients at infinite dilution of
Sufficients at infinite dilution
of a sufficient at the infinite dilution of
Sufficient at the infinite dilution
(Solig) Sufficient at the infinite dilut + propionic acid + dichloromethane)

ternary system by cloud point method:

https://www.doi.org/10.1021/je049616k

https://www.doi.org/10.1016/j.jct.2011.11.007

https://www.doi.org/10.1016/j.jct.2016.07.021

https://www.doi.org/10.1021/je7007457

https://www.doi.org/10.1021/je8005826

https://www.doi.org/10.1021/acs.jced.9b00445

https://www.doi.org/10.1021/je4010917

www.doi.org/10.1021/acs.jced.9b00360

https://www.doi.org/10.1021/je1005517

https://www.doi.org/10.1021/je800218g

https://en.wikipedia.org/wiki/Joback_method

https://www.doi.org/10.1021/je800468h

https://www.doi.org/10.1021/je800658v

https://www.doi.org/10.1016/j.fluid.2018.06.008

https://www.doi.org/10.1021/acs.jced.8b01193

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1526

https://www.doi.org/10.1021/je900694m

https://www.doi.org/10.1021/je500286x

https://www.doi.org/10.1021/je060138i

https://www.doi.org/10.1021/je060305e

http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt

https://www.doi.org/10.1016/j.fluid.2012.05.006

https://www.doi.org/10.1021/acs.jced.9b00432

https://www.doi.org/10.1016/j.fluid.2007.02.020

https://www.doi.org/10.1021/acs.jced.5b00268

Activity coefficients at infinite dilution

of organic solutes in the ionic liquid Activity Coefficients at anime diductor of organic solutes in a solution of the solutio Using unverse to assorrementor approximation of small aircompounds with the ionic liquidhttps://www.doi.org/10.1021/je4000982compounds with the ionic liquidhttps://www.doi.org/10.1016/j.tca.2017.05.005compounds with the ionic liquidhttps://www.doi.org/10.1021/je800754wcompounds infragganic compounds incompounds with the ionic liquidhttps://www.doi.org/10.1021/je800754wcompounds with the ionic liquidhttps://www.doi.org/10.1016/j.jct.2013.11.034compounds with the ionic liquidhttps://www.doi.org/10.1016/j.tca.2009.07.011compounds with the ionic liquidhttps://www.doi.org/10.1021/je800754wcompounds with the ionic liquidhttps://www.doi.org/10.1016/j.jct.2013.11.034compounds with the ionic liquidhttps://www.doi.org/10.1021/je8007815compounds with the thermodynamichttps://www.doi.org/10.1021/je8007815compounds in New Imidazolium andhttps://www.doi.org/10.1016/j.jct.2018.09.023compounds in New Imidazolium andhttps://www.doi.org/10.1021/je9003178compounds in New Imidazolium andhttps://www.doi.org/10.1021/je9003178 rartition Coefficients of Organic Compounds in New Imidazolium and Seltability of Porlute grave a Water, Dichles coefficient of Organic Selvenity of Imidacloprid in Different Selvenity of Imidacloprid in Different

Solvents Solubilities of Phosphoramidic Acid,

N-(phenylmethyl)-, Diphenyl Ester in Selevity Coefficients at Infinite Dilution by GLC in Alkanediamines as Stationary Phases:

Phase Separation in Binary Mixtures Containing Linear Perfluoroalkanes: 1-Ethyl-3-methylimidazolium Ethylsulfate in Water, Acetonitrile, and Dighioronaurane Meano Englishing and binard thies Represe Subartine Free Subartine States in Represe Subartine Free Subartine States in Represe Subartine S Phase Separation in Binary Mixtures

Pentahydrate in Different Solvents Seaweiiozvorkhanderformance of Trigeminal Tricationic Lonic Liquids for Busparation Properties, Densities, and Contact Angles of Task Specific Ionic Sputility of Ofloxacin in 1,2-Dichloromethane, Chloroform,

6 ativity Forestinients at the investigation of 3 roanics of an powned in Four New bridd 20 in Bases post signature Compounds in Selected Solvents: Study of interaction between organic compounds and mono or dicationic Megewated the hed liquids using gas

chromatography: Solubility and Thermodynamic Functions of Isatin in Pure Solvents: https://www.doi.org/10.1016/j.fluid.2010.10.008

https://www.doi.org/10.1021/je200050q

https://www.doi.org/10.1021/je900838a

https://www.doi.org/10.1016/j.jct.2011.09.028

https://www.doi.org/10.1021/acs.jced.6b00970

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1526

https://www.doi.org/10.1021/acs.jced.5b00007

https://www.doi.org/10.1021/je200628n

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1526

https://www.doi.org/10.1021/je049620w

https://www.doi.org/10.1021/acs.jced.7b00840

https://www.doi.org/10.1016/j.fluid.2013.10.037

https://www.doi.org/10.1016/j.fluid.2007.03.032

https://www.doi.org/10.1021/je201129y

https://www.doi.org/10.1021/je900502s

https://www.doi.org/10.1021/je900540d

https://www.doi.org/10.1021/je200195q

https://www.doi.org/10.1021/je100341q

https://www.doi.org/10.1016/j.fluid.2014.11.020

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1021/je500396b

Solubilities of evodiamine in twelve https://www.doi.org/10.1016/j.jct.2012.11.021 organic solvents from T = (283.2 to https://www.doi.org/10.1016/j.jct.2008.08.013 yzyumetric properties of Autor of the second of the sec https://www.doi.org/10.1021/je700069g https://www.doi.org/10.1021/acs.jced.7b00160 Models for the Separation of Subtrive Minan prement and Correlation https://www.doi.org/10.1021/acs.jced.5b00857 ac/correlation https://www.doi.org/10.1021/acs.jced.5b00857 ac/correlation https://www.doi.org/10.1016/j.jct.2017.07.012 present and present https://www.doi.org/10.1016/j.fluid.2013.09.023 Acili Si ZyElenzervi Exception https://www.doi.org/10.1021/acs.jced.6b Different Pure Solvents and Binary Marine Control of the solvents and Binary Mar https://www.doi.org/10.1016/j.jct.2013.05.035 https://www.doi.org/10.1016/j.jct.2018.05.017 https://www.doi.org/10.1016/j.jct.2012.09.017 https://www.doi.org/10.1016/j.fluid.2008.07.016 https://www.doi.org/10.1021/acs.jced.6b00164 Separationa of senaras dividered an https://www.doi.org/10.1016/j.jct.2018.09.003 Annual Solive desapainty Effect and sommer Solive desapainty Effect and sommer and the solid and the solid and averaging of the solid and the solid and the average of the solid and the https://www.doi.org/10.1021/je7007389 https://www.doi.org/10.1021/acs.jced.7b01085 https://www.doi.org/10.1021/je1002237 for Binary Mixtures of Ionic Liquid Ethylsulfate with Solvents: Determination and Correlation of https://www.doi.org/10.1021/acs.jced.5b00135 Solubility of N-tertbutylacrylamide in **Severi Directive Stratignite dilution be reasurements in binary mixtures of New Directive Stratigner (1978) (10,1021/je4005992) Articles (1998) (10,1021/je300692) Articles (1998) (10** https://www.doi.org/10.1016/j.jct.2013.10.038 https://www.doi.org/10.1021/acs.jced.7b00244 https://www.doi.org/10.1021/acs.jced.9b00064 https://www.doi.org/10.1016/j.fluid.2015.11.037 https://www.doi.org/10.1021/acs.jced.7b00119 tor Ocapitis in the control of the mainter, tor Ocapitis in the control of the co Legend^{yl Chains:}

af:Acentric Factoraffp:Proton affinitybasg:Gas basicitychl:Standard liquid enthalpy of combustioncpg:Ideal gas heat capacitycpl:Liquid phase heat capacitydm:Dipole Moment

dvisc:	Dynamic viscosity
gf:	Standard Gibbs free energy of formation
gyrad:	Radius of Gyration
hf:	Enthalpy of formation at standard conditions
hfl:	Liquid phase enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions
hfust:	Enthalpy of fusion at a given temperature
hvap:	Enthalpy of vaporization at standard conditions
hvapt:	Enthalpy of vaporization at a given temperature
ie:	Ionization energy
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
nfpah:	NFPA Health Rating
рс:	Critical Pressure
pvap:	Vapor pressure
rfi:	Refractive Index
rhol:	Liquid Density
rinpol:	Non-polar retention indices
ripol:	Polar retention indices
sl:	Liquid phase molar entropy at standard conditions
srf:	Surface Tension
tb:	Normal Boiling Point Temperature
tbp:	Boiling point at given pressure
tc:	Critical Temperature
tf:	Normal melting (fusion) point
VC:	Critical Volume
zra:	Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/31-051-0/Methylene-chloride.pdf

Generated by Cheméo on 2024-04-27 21:09:09.28416885 +0000 UTC m=+16541398.204746161. Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.