3-Pentanone

Other names: (C2H5)2CO

1,3-Dimethylacetone

DEK

Diethyl ketone
Diethylcetone
Dimethylacetone
Ethyl ketone
Ethyl propionyl
Metacetone
Methacetone
NSC 8653
PROPIONE
Pentan-3-one

Pentanone-3 UN 1156

Inchi: InChl=1S/C5H10O/c1-3-5(6)4-2/h3-4H2,1-2H3

InchiKey: FDPIMTJIUBPUKL-UHFFFAOYSA-N

Formula: C5H10O SMILES: CCC(=O)CC

Mol. weight [g/mol]: 86.13 **CAS:** 96-22-0

Physical Properties

Property code	Value	Unit	Source
af	0.3440		KDB
affp	836.80	kJ/mol	NIST Webbook
basg	802.60	kJ/mol	NIST Webbook
basg	803.80 ± 0.30	kJ/mol	NIST Webbook
basg	807.00	kJ/mol	NIST Webbook
chl	-3104.70 ± 0.90	kJ/mol	NIST Webbook
chl	-3100.20 ± 1.00	kJ/mol	NIST Webbook
dm	2.70	debye	KDB
gf	-135.40	kJ/mol	KDB
hf	-253.40 ± 0.90	kJ/mol	NIST Webbook
hf	-257.95 ± 0.84	kJ/mol	NIST Webbook
hf	-258.80	kJ/mol	KDB
hf	-260.50 ± 1.60	kJ/mol	NIST Webbook

hfl	-296.51 ± 0.83	kJ/mol	NIST Webbook
hfus	10.30	kJ/mol	Joback Method
hvap	38.60	kJ/mol	NIST Webbook
hvap	38.50	kJ/mol	NIST Webbook
hvap	38.52	kJ/mol	NIST Webbook
hvap	38.68	kJ/mol	NIST Webbook
hvap	38.70 ± 0.30	kJ/mol	NIST Webbook
ie	9.31 ± 0.02	eV	NIST Webbook
ie	9.22 ± 0.02	eV	NIST Webbook
ie	9.31 ± 0.01	eV	NIST Webbook
ie	9.37 ± 0.03	eV	NIST Webbook
ie	9.31 ± 0.02	eV	NIST Webbook
ie	9.32 ± 0.01	eV	NIST Webbook
ie	9.31	eV	NIST Webbook
ie	9.31 ± 0.01	eV	NIST Webbook
ie	9.30	eV	NIST Webbook
log10ws	-0.28		Estimated Solubility Method
log10ws	-0.28		Aqueous Solubility Prediction Method
logp	1.375		Crippen Method
mcvol	82.880	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=1)		KDB
рс	3729.00 ± 10.00	kPa	NIST Webbook
рс	3740.00 ± 41.40	kPa	NIST Webbook
рс	3729.00	kPa	KDB
rhoc	255.81 ± 30.15	kg/m3	NIST Webbook
rinpol	669.00		NIST Webbook
rinpol	672.00		NIST Webbook
rinpol	689.00		NIST Webbook
rinpol	697.00		NIST Webbook
rinpol	687.00		NIST Webbook
rinpol	697.00		NIST Webbook
rinpol	675.00		NIST Webbook
rinpol	700.00		NIST Webbook
rinpol	701.30		NIST Webbook
rinpol	671.00		NIST Webbook
rinpol	669.00		NIST Webbook
rinpol	669.00		NIST Webbook
rinpol	675.00		NIST Webbook
•			NIST Webbook
rinpol	669.92		
rinpol rinpol	669.92 701.00		NIST Webbook
			NIST Webbook NIST Webbook

rinpol	688.00	NIST Webbook
rinpol	685.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	676.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	677.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	681.00	NIST Webbook
rinpol	688.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	676.00	NIST Webbook
rinpol	678.00	NIST Webbook
rinpol	678.00	NIST Webbook
rinpol	683.00	NIST Webbook
rinpol	666.00	NIST Webbook
rinpol	669.00	NIST Webbook
rinpol	685.00	NIST Webbook
rinpol	683.00	NIST Webbook
rinpol	643.00	NIST Webbook
rinpol	703.00	NIST Webbook
rinpol	694.00	NIST Webbook
rinpol	707.00	NIST Webbook
rinpol	703.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	659.00	NIST Webbook
rinpol	670.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	700.00	NIST Webbook
rinpol	672.00	NIST Webbook
rinpol	647.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	647.00	NIST Webbook
rinpol	638.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	665.00	NIST Webbook
rinpol	640.00	NIST Webbook
rinpol	682.00	NIST Webbook
rinpol	682.00	NIST Webbook
rinpol	681.00	NIST Webbook
rinpol	682.00	NIST Webbook
rinpol	676.00	NIST Webbook
rinpol	675.00	NIST Webbook

rinpol	677.00	NIST Webbook
rinpol	677.74	NIST Webbook
rinpol	705.00	NIST Webbook
rinpol	675.84	NIST Webbook
rinpol	675.52	NIST Webbook
rinpol	675.42	NIST Webbook
rinpol	675.75	NIST Webbook
rinpol	676.91	NIST Webbook
rinpol	676.40	NIST Webbook
rinpol	676.00	NIST Webbook
rinpol	658.00	NIST Webbook
ripol	981.00	NIST Webbook
ripol	970.00	NIST Webbook
ripol	977.00	NIST Webbook
ripol	965.00	NIST Webbook
ripol	981.00	NIST Webbook
ripol	977.00	NIST Webbook
ripol	965.00	NIST Webbook
ripol	986.00	NIST Webbook
ripol	980.00	NIST Webbook
ripol	997.00	NIST Webbook
ripol	980.00	NIST Webbook
ripol	983.00	NIST Webbook
ripol	1002.00	NIST Webbook
ripol	971.00	NIST Webbook
ripol	969.00	NIST Webbook
ripol	971.00	NIST Webbook
ripol	980.00	NIST Webbook
ripol	964.00	NIST Webbook
ripol	1011.30	NIST Webbook
ripol	996.90	NIST Webbook
ripol	1001.50	NIST Webbook
ripol	1006.30	NIST Webbook
ripol	974.00	NIST Webbook
ripol	976.00	NIST Webbook
ripol	958.00	NIST Webbook
ripol	983.00	NIST Webbook
ripol	983.00	NIST Webbook
ripol	983.00	NIST Webbook
ripol	978.00	NIST Webbook
ripol	977.00	NIST Webbook
ripol	970.00	NIST Webbook
ripol	956.00	NIST Webbook
ripol	979.00	NIST Webbook

ripol	975.00		NIST Webbook
ripol	970.00		NIST Webbook
ripol	979.00		NIST Webbook
sl	266.00	J/mol×K	NIST Webbook
tb	375.11	K	KDB
tc	561.46	K	KDB
tc	561.50	K	NIST Webbook
tc	561.46 ± 0.20	K	NIST Webbook
tc	560.90 ± 0.56	K	NIST Webbook
tf	234.18 ± 0.01	K	NIST Webbook
tf	231.15 ± 0.50	K	NIST Webbook
tf	234.15 ± 0.02	K	NIST Webbook
tf	233.90	K	Aqueous Solubility Prediction Method
tf	234.00	K	KDB
tf	233.35 ± 0.40	K	NIST Webbook
tf	231.20 ± 1.50	K	NIST Webbook
tt	234.36	Κ	Thermodynamics of binary mixtures of N-methyl-2-pyrrolidinone and ketone. Experimental results and modelling of the solid-liquid equilibrium and vapou-liquid equilibrium. The Modified UNIFAC (Do) model characterization
tt	234.16 ± 0.03	K	NIST Webbook
tt	234.16 ± 0.03	K	NIST Webbook
VC	0.336	m3/kmol	KDB
ZC	0.2683960		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	175.14	J/mol×K	473.15	NIST Webbook
cpg	151.38	J/mol×K	383.15	NIST Webbook
cpg	156.77	J/mol×K	403.15	NIST Webbook
cpg	162.13	J/mol×K	423.15	NIST Webbook
cpg	168.70	J/mol×K	448.15	NIST Webbook
cpg	146.31	J/mol×K	364.15	NIST Webbook
cpl	200.70	J/mol×K	298.15	NIST Webbook
cpl	196.40	J/mol×K	298.15	NIST Webbook
cpl	190.90	J/mol×K	298.15	NIST Webbook
cpl	195.70	J/mol×K	298.15	NIST Webbook

cpl	190.30	J/mol×K	298.15	NIST Webbook	
cpl	190.00	J/mol×K	298.15	NIST Webbook	
dvisc	0.0004490	Paxs	298.15	Density and Viscosity of Binary Mixtures of n-Butyl Acetate with Ketones at (298.15, 303.15, 308.15, and 313.15) K	
dvisc	0.0003960	Paxs	308.15	Density and Viscosity of Binary Mixtures of n-Butyl Acetate with Ketones at (298.15, 303.15, 308.15, and 313.15) K	
dvisc	0.0003880	Paxs	313.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Diethyl Oxalate with Some Ketones at (303.15, 308.15, and 313.15) K	
dvisc	0.0003970	Paxs	308.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Diethyl Oxalate with Some Ketones at (303.15, 308.15, and 313.15) K	
dvisc	0.0004290	Paxs	303.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Diethyl Oxalate with Some Ketones at (303.15, 308.15, and 313.15) K	
dvisc	0.0004231	Paxs	303.15	Viscosities, Densities, and Ultrasonic Velocities of 3-Pentanone + Ethylbenzene and 3-Pentanone + o-Xylene at (293.15, 303.15, and 313.15) K	

dvisc	0.0003760	Paxs	313.15	Density and Viscosity of Binary Mixtures of n-Butyl Acetate with Ketones at (298.15, 303.15, 308.15, and 313.15) K	
dvisc	0.0004714	Paxs	293.15	Viscosities, Densities, and Ultrasonic Velocities of 3-Pentanone + Ethylbenzene and 3-Pentanone + o-Xylene at (293.15, 303.15, and 313.15) K	
dvisc	0.0004190	Paxs	303.15	Density and Viscosity of Binary Mixtures of n-Butyl Acetate with Ketones at (298.15, 303.15, 308.15, and 313.15) K	
dvisc	0.0003799	Paxs	313.15	Viscosities, Densities, and Ultrasonic Velocities of 3-Pentanone + Ethylbenzene and 3-Pentanone + o-Xylene at (293.15, 303.15, and 313.15) K	
hfust	11.59	kJ/mol	234.20	NIST Webbook	
hfust	11.59	kJ/mol	234.20	NIST Webbook	
hfust	0.11	kJ/mol	118.50	NIST Webbook	
hfust	0.01	kJ/mol	180.00	NIST Webbook	
hvapt	33.50 ± 0.10	kJ/mol	375.00	NIST Webbook	
hvapt	34.90 ± 0.10	kJ/mol	354.00	NIST Webbook	
hvapt	36.10 ± 0.10	kJ/mol	335.00	NIST Webbook	
hvapt	33.70	kJ/mol	461.50	NIST Webbook	
hvapt	36.60	kJ/mol	377.50	NIST Webbook	
hvapt	35.90 ± 0.20	kJ/mol	332.50	NIST Webbook	
hvapt	33.45	kJ/mol	375.20	NIST Webbook	
 hvapt	33.30	kJ/mol	527.50	NIST Webbook	
hvapt	36.60	kJ/mol	356.50	NIST Webbook	
 hvapt	36.90	kJ/mol	303.00	NIST Webbook	

rfi	1.39020		298.15	Excess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidone with ketones at T = 303.15 K
rfi	1.39000		298.15	Phase Equilibria in the Binary and Ternary Systems Composed of Diethyl ketone, 2-Pentanone and 3-Pentanol at 101.3 kPa
rhol	799.32	kg/m3	308.15	Thermal and Volumetric Properties of Some C5 and C6 Alkanones at Infinite Dilution in Water
rhol	789.63	kg/m3	318.15	Excess molar volumes, viscosity deviations and excess thermal expansion coefficients for binary and ternary mixtures consist of diethylketone + 2-butanol + ethylchloroacetate at (298.15, 308.15 and 318.15) K
rhol	814.00	kg/m3	293.00	KDB
rhol	818.90	kg/m3	288.15	Thermal and Volumetric Properties of Some C5 and C6 Alkanones at Infinite Dilution in Water
rhol	799.55	kg/m3	308.15	Excess molar volumes, viscosity deviations and excess thermal expansion coefficients for binary and ternary mixtures consist of diethylketone + 2-butanol + ethylchloroacetate at (298.15, 308.15 and 318.15) K

rhol	809.38	kg/m3	298.15	Excess molar volumes, viscosity deviations and excess thermal expansion coefficients for binary and ternary mixtures consist of diethylketone + 2-butanol + ethylchloroacetate at (298.15, 308.15 and 318.15) K	
rhol	804.62	kg/m3	303.15	Excess molar volumes and ultrasonic studies of dimethylsulphoxide with ketones at T = 303.15 K	
rhol	809.09	kg/m3	298.15 n	Excess molar enthalpies and volumes of binary mixtures of onafluorobutylmethylether with ketones at T = 298.15 K	
rhol	809.16	kg/m3	298.15	Thermal and Volumetric Properties of Some C5 and C6 Alkanones at Infinite Dilution in Water	
rhol	789.41	kg/m3	318.15	Thermal and Volumetric Properties of Some C5 and C6 Alkanones at Infinite Dilution in Water	
sfust	0.96	J/mol×K	118.50	NIST Webbook	
sfust	0.04	J/mol×K	180.00	NIST Webbook	
sfust	49.50	J/mol×K	234.20	NIST Webbook	
speedsl	1160.00	m/s	313.15	Densities and Speeds of Sound for Binary Liquid Mixtures of Thiolane-I,I-dioxide with Butanone, Pentan-2-one, Pentan-3-one, and 4-Methyl-pentan-2-one at T = (303.15 or 308.15 or 313.15) K	

	4407.00	1	000.45	B 10
speedsl	1197.00	m/s	303.15	Densities and Speeds of Sound for Binary Liquid Mixtures of Thiolane-I,I-dioxide with Butanone, Pentan-2-one, Pentan-3-one, and 4-Methyl-pentan-2-one at T = (303.15 or 308.15 or 313.15) K
speedsl	1179.00	m/s	308.15	Densities and Speeds of Sound for Binary Liquid Mixtures of Thiolane-I,I-dioxide with Butanone, Pentan-2-one, Pentan-3-one, and 4-Methyl-pentan-2-one at T = (303.15 or 308.15 or 313.15) K
srf	0.03	N/m	287.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	301.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	303.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	305.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K

srf	0.02	N/m	307.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	309.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	311.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	313.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	315.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	317.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	319.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K

srf	0.02	N/m	321.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	323.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	325.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	285.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	329.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	283.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	299.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K

srf	0.03	N/m	297.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K	
srf	0.03	N/m	295.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K	
srf	0.03	N/m	293.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K	
srf	0.03	N/m	291.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K	
srf	0.03	N/m	289.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K	
srf	0.02	N/m	327.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K	

Correlations

Information Value

Property code	pvap
Equation	In(Pvp) = A + B/(T + C)
Coeff. A	1.47173e+01
Coeff. B	-3.36681e+03
Coeff. C	-4.16190e+01
Temperature range (K), min.	274.94
Temperature range (K), max.	399.57

Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	7.00329e+01
Coeff. B	-6.68960e+03
Coeff. C	-8.16282e+00
Coeff. D	5.65048e-06
Temperature range (K), min.	234.18
Temperature range (K), max.	561.00

Datasets

Viscosity, Pa*s

Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid
308.15	101.30	0.0003710
Reference		https://www.doi.org/10.1021/je8003723

https://www.doi.org/10.1021/je8003723

Sources

Evaluation of the Performance of Trigeminal Tricationic Ionic Liquids for Blosautements Measivity coefficients at infinite dilution for organic solutes blow with Intelligible Holling Intelligible Inte Liquids Having Six-, Eight-, and Ten-Carbon Alkyl Chains:

https://www.doi.org/10.1021/je201129y https://www.doi.org/10.1016/j.jct.2013.07.004 https://www.doi.org/10.1016/j.fluid.2018.07.028 https://www.doi.org/10.1016/j.jct.2005.07.024 https://www.doi.org/10.1021/je100715x https://www.doi.org/10.1021/je300692s

Measurements of activity coefficients https://www.doi.org/10.1016/j.jct.2010.10.026 at infinite dilution of organic Activity in a state infinite dilution https://www.doi.org/10.1016/j.jct.2011.04.018 Ashivisuagefinie wister infinite dilution problems of properties for the infinite dilution problems of properties for the infinite dilution problems of the infinite dilution pr http://link.springer.com/article/10.1007/BF02311772 liquid trihexyl-tetradecyl-phosphonium Higyan en angline k of Vapor Pressure: https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure The use of ionic liquids for separation of binary hydrocarbons mixtures based separations in the properties in the cane/hex-1-ene, beauth a saw 6 persone to a separation of binary hydrocarbons mixtures based separation and physicochemical properties for and physicochemical properties for desirity sentites ental a saw interesting and physicochemical properties for an and physicochemical physical physicochemical properties for an analysis and physicochemical properties for an analysis and physicochemical physicochemical properties for an analysis and physicochemical physicoche The use of ionic liquids for separation https://www.doi.org/10.1016/j.jct.2018.07.024 https://www.doi.org/10.1016/j.jct.2017.03.004 https://www.doi.org/10.1021/je900711h https://www.doi.org/10.1016/j.jct.2013.05.008 https://www.doi.org/10.1016/j.jct.2011.11.021 https://www.doi.org/10.1021/je025651k uhttps://www.doi.org/10.1021/je100410k https://www.doi.org/10.1021/acs.jced.9b00726 https://www.doi.org/10.1016/j.jct.2010.05.017 https://www.doi.org/10.1021/je700591h https://www.doi.org/10.1021/je700591h

flag fight fight for the fight for the fight fight for the fight fight for the fight fight for the figh Biganic saling Mextures of Aliphatic Reparted on in Price of Aliphatic Aliphatic Properties of Alianones at Infinite Aliphatic Properties of Alianones Aliahinite Aliphatic Properties for Activity Coefficients ablatinite Diliphatic Properties for Activity Coefficients ablatinite Diliphatic Properties for Activity Coefficients ablatinite Diliphatic Properties of Alianones Aliahinite Diliphatic Properties for Activity Coefficients ablatinite Diliphatic Properties of Alianones Aliahinite Diliphatic Properties for Activity Coefficients ablatinite Diliphatic Properties of Aliphatic Properties Activity Coefficients Alianones Alianinite Diliphatic Properties Activity Coefficients Alianinite Aliphatic Properties Alianinite Aliphatic Properties Alianinite Aliphatic Properties Activity Coefficients Alianinite Aliphatic Properties Alianinite Alianinite Aliphatic Properties Alianinite Alianinit https://www.doi.org/10.1016/j.fluid.2018.06.013 https://www.doi.org/10.1016/j.jct.2011.11.025 https://www.doi.org/10.1016/j.fluid.2014.11.020 https://www.doi.org/10.1021/je800658v https://www.doi.org/10.1016/j.jct.2013.10.026 https://www.doi.org/10.1016/j.fluid.2007.06.001 https://www.doi.org/10.1016/j.fluid.2018.09.024 https://www.doi.org/10.1021/je101008y https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1196 https://www.doi.org/10.1021/acs.jced.7b00035 https://www.doi.org/10.1016/j.jct.2013.01.007 and physicochemical properties for Activity Someway and properties for https://www.doi.org/10.1021/je200195q organic someone and water in the low property of the cour new management of the cour new management of the cour new management of the course o https://www.doi.org/10.1016/j.fluid.2017.06.001 ACTIVITY COUNTY https://www.doi.org/10.1021/acs.jced.5b00980 https://www.doi.org/10.1016/j.jct.2007.08.006 https://www.doi.org/10.1021/je030151s https://www.doi.org/10.1016/j.jct.2006.03.003 https://www.doi.org/10.1016/j.jct.2017.10.003 http://webbook.nist.gov/cgi/cbook.cgi?ID=C96220&Units=SI

1,3-didecyl-2-methylimidazolium dicyanamide ionic liquid:

Thermodynamics and activity https://www.doi.org/10.1016/j.jct.2011.06.007 coefficients at infinite dilution
Measurements of activity is incessificient and objective interesting interesting interesting interesting in the control of coefficients at infinite dilution igaid5 or 313.15 (incretically surdy of whites://www.doi.org/10.1016/j.jct.2014.12.027 interaction between organical indexed the house of the company of the based ionic liquids: Activity Coefficients at Infinite Dilution https://www.doi.org/10.1021/je4001894 Activity Coefficients at infinite Dilution for Organic Solutes Dissolved in Three Thankind hottogether sometime and the solute something the solute something the solute solute to the solute s https://www.doi.org/10.1016/j.jct.2013.09.007 https://www.doi.org/10.1016/j.jct.2015.02.024 http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt liquid 1 45 Hyor Coefficients of Clannic Theolinium ps://www.doi.org/10.1021/je200637v Companya in the way of whole dear https://www.doi.org/10.1016/j.jct.2018.0 https://www.doi.org/10.1016/j.jct.2018.02.014 Terrandyammersumy of Molecular Brights of Statistic Statistics and the Statistics of Brights of Statistics and the Statistics of Brights of the Statistics o https://www.doi.org/10.1016/j.jct.2012.08.016 https://www.doi.org/10.1016/j.jct.2016.07.017
https://www.doi.org/10.1016/j.jct.2016.07.017
https://www.doi.org/10.1016/j.jct.2016.07.017
https://www.doi.org/10.1016/j.jct.2012.01.019
https://www.doi.org/10.1016/j.jct.2012.01.019
https://www.doi.org/10.1016/j.jct.2012.01.019
https://www.doi.org/10.1016/j.jct.2012.01.019
https://www.doi.org/10.1016/j.jct.2012.05.022
https://www.doi.org/10.1016/j.jct.2012.05.022
https://www.doi.org/10.1016/j.jct.2012.05.017
https://www.doi.org/10.1016/j.jct.2012.05.017
https://www.doi.org/10.1016/j.jct.2012.05.017
https://www.doi.org/10.1016/j.jct.2014.04.024
https://www.doi.org/10.1016/j.jct.2014.04.024
https://www.doi.org/10.1016/j.jct.2014.04.024
https://www.doi.org/10.1016/j.jct.2014.04.024
https://www.doi.org/10.1016/j.fluid.2016.02.00
https://www.doi.org/10.1016/j.fluid.2016.02.00 https://www.doi.org/10.1016/j.jct.2016.07.017 https://www.doi.org/10.1016/j.fluid.2014.06.021 https://www.doi.org/10.1016/j.fluid.2016.02.004 https://www.cheric.org/files/research/kdb/mol/mol1196.mol K-1916fyl-3-methylimidazolium dicyanamide. A literature review of Partition Compounds in New midazolium and Pewairophamioal propostigation and Pewairophamioal propostigation and proving conficients at crimite dilution through the processes: Expensive three and ultraspring studies of N-methyl-2-pyrrolidone with Activities conficients and water in https://www.doi.org/10.1016/j.jct.2016.01.017 https://www.doi.org/10.1016/j.jct.2019.030 https://www.doi.org/10.1016/j.jct.2019.030 https://www.doi.org/10.1016/j.jct.2019.01010 https://www.doi.org/1 Thermodynemics and water in Thermodynemics of bitters and water in Thermodynemics of bitters with the second Number in the second in the seco https://www.doi.org/10.1016/j.jct.2004.11.007 https://www.doi.org/10.1016/j.tca.2013.03.008 Experimental recultives all incost ling of flex is increased a second excess floring and https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1196 https://www.doi.org/10.1016/j.jct.2013.09.012

Legend

313.15) K:

Ketones at (298.15, 303.15, 308.15, and

af: Acentric Factoraffp: Proton affinitybasg: Gas basicity

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacitycpl: Liquid phase heat capacity

dm: Dipole Momentdvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

nfpaf: NFPA Fire Rating
nfpah: NFPA Health Rating
pc: Critical Pressure
pvap: Vapor pressure
rfi: Refractive Index
rhoc: Critical density
rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility

Latest version available from:

https://www.chemeo.com/cid/30-912-5/3-Pentanone.pdf

Generated by Cheméo on 2024-04-09 06:20:53.883483549 +0000 UTC m=+14932902.804060882.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.