3-Pentanone

Other names:	(C2H5)2CO 1,3-Dimethylacetone DEK Diethyl ketone Diethylcetone Dimethylacetone Ethyl ketone Ethyl propionyl Metacetone Methacetone NSC 8653 PROPIONE Pentan-3-one Pentanone-3 UN 1156
Inchi:	InChI=1S/C5H10O/c1-3-5(6)4-2/h3-4H2,1-2H3
InchiKey:	FDPIMTJIUBPUKL-UHFFFAOYSA-N
Formula:	C5H10O
SMILES:	CCC(=O)CC
Mol. weight [g/mol]:	86.13
CAS:	96-22-0

Physical Properties

Property code	Value	Unit	Source
af	0.3440		KDB
affp	836.80	kJ/mol	NIST Webbook
basg	807.00	kJ/mol	NIST Webbook
basg	802.60	kJ/mol	NIST Webbook
basg	803.80 ± 0.30	kJ/mol	NIST Webbook
chl	-3104.70 ± 0.90	kJ/mol	NIST Webbook
chl	-3100.20 ± 1.00	kJ/mol	NIST Webbook
dm	2.70	debye	KDB
gf	-135.40	kJ/mol	KDB
hf	-253.40 ± 0.90	kJ/mol	NIST Webbook
hf	-257.95 ± 0.84	kJ/mol	NIST Webbook
hf	-260.50 ± 1.60	kJ/mol	NIST Webbook
hf	-258.80	kJ/mol	KDB

hfl	-296.51 ± 0.83	kJ/mol	NIST Webbook
hfus	10.30	kJ/mol	Joback Method
hvap	38.50	kJ/mol	NIST Webbook
hvap	38.52	kJ/mol	NIST Webbook
hvap	38.68	kJ/mol	NIST Webbook
hvap	38.60	kJ/mol	NIST Webbook
hvap	38.70 ± 0.30	kJ/mol	NIST Webbook
ie	9.31 ± 0.02	eV	NIST Webbook
ie	9.32 ± 0.01	eV	NIST Webbook
ie	9.31 ± 0.01	eV	NIST Webbook
ie	9.31 ± 0.01	eV	NIST Webbook
ie	9.30	eV	NIST Webbook
ie	9.31	eV	NIST Webbook
ie	9.31 ± 0.02	eV	NIST Webbook
ie	9.37 ± 0.03	eV	NIST Webbook
ie	9.22 ± 0.02	eV	NIST Webbook
log10ws	-0.28		Estimated Solubility Method
log10ws	-0.28		Aqueous Solubility Prediction Method
logp	1.375		Crippen Method
mcvol	82.880	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=1)		KDB
рс	3740.00 ± 41.40	kPa	NIST Webbook
рс	3729.00	kPa	KDB
рс	3729.00 ± 10.00	kPa	NIST Webbook
rhoc	255.81 ± 30.15	kg/m3	NIST Webbook
rinpol	675.00		NIST Webbook
rinpol	675.52		NIST Webbook
rinpol	677.74		NIST Webbook
rinpol	677.00		NIST Webbook
rinpol	675.42		NIST Webbook
rinpol	676.00		NIST Webbook
rinpol	676.00		NIST Webbook
rinpol	682.00		NIST Webbook
rinpol	681.00		NIST Webbook
rinpol	682.00		NIST Webbook
rinpol	682.00		NIST Webbook
rinpol	640.00		NIST Webbook
rinpol	658.00		NIST Webbook
rinpol	665.00		NIST Webbook
rinpol	651.00		NIST Webbook
rinpol	675.75		NIST Webbook
ΠΠΡΟΙ	013.13		

	07/00	
rinpol	651.00	NIST Webbook
rinpol	647.00	NIST Webbook
rinpol	672.00	NIST Webbook
rinpol	700.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	670.00	NIST Webbook
rinpol	659.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	703.00	NIST Webbook
rinpol	707.00	NIST Webbook
rinpol	694.00	NIST Webbook
rinpol	703.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	665.00	NIST Webbook
rinpol	672.00	NIST Webbook
rinpol	689.00	NIST Webbook
rinpol	697.00	NIST Webbook
rinpol	687.00	NIST Webbook
rinpol	697.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	700.00	NIST Webbook
rinpol	701.30	NIST Webbook
rinpol	671.00	NIST Webbook
rinpol	669.00	NIST Webbook
rinpol	669.00	NIST Webbook
rinpol	681.00	NIST Webbook
rinpol	669.92	NIST Webbook
rinpol	701.00	NIST Webbook
rinpol	681.00	NIST Webbook
rinpol	669.00	NIST Webbook
rinpol	688.00	NIST Webbook
rinpol	685.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	676.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	677.00	NIST Webbook
rinpol	705.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	676.91	NIST Webbook
rinpol	688.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	676.00	NIST Webbook
rinpol	678.00	NIST Webbook

rinpol	678.00	NIST Webbook
rinpol	683.00	NIST Webbook
rinpol	666.00	NIST Webbook
rinpol	669.00	NIST Webbook
rinpol	685.00	NIST Webbook
rinpol	683.00	NIST Webbook
rinpol	643.00	NIST Webbook
rinpol	676.40	NIST Webbook
rinpol	638.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	675.84	NIST Webbook
ripol	1011.30	NIST Webbook
ripol	976.00	NIST Webbook
ripol	958.00	NIST Webbook
ripol	983.00	NIST Webbook
ripol	983.00	NIST Webbook
ripol	983.00	NIST Webbook
ripol	978.00	NIST Webbook
ripol	977.00	NIST Webbook
ripol	970.00	NIST Webbook
ripol	956.00	NIST Webbook
ripol	979.00	NIST Webbook
ripol	979.00	NIST Webbook
ripol	970.00	NIST Webbook
ripol	981.00	NIST Webbook
ripol	975.00	NIST Webbook
ripol	964.00	NIST Webbook
ripol	980.00	NIST Webbook
ripol	971.00	NIST Webbook
ripol	969.00	NIST Webbook
ripol	1002.00	NIST Webbook
ripol	983.00	NIST Webbook
ripol	980.00	NIST Webbook
ripol	997.00	NIST Webbook
ripol	980.00	NIST Webbook
ripol	986.00	NIST Webbook
ripol	965.00	NIST Webbook
ripol	977.00	NIST Webbook
ripol	981.00	NIST Webbook
ripol	965.00	NIST Webbook
ripol	977.00	NIST Webbook
ripol	970.00	NIST Webbook
ripol	971.00	NIST Webbook
ripol	974.00	NIST Webbook

ripol	1001.50		NIST Webbook
ripol	996.90		NIST Webbook
ripol	1006.30		NIST Webbook
sl	266.00	J/mol×K	NIST Webbook
tb	375.11	К	KDB
tc	560.90 ± 0.56	К	NIST Webbook
tc	561.50	К	NIST Webbook
tc	561.46 ± 0.20	К	NIST Webbook
tc	561.46	К	KDB
tf	234.00	К	KDB
tf	231.15 ± 0.50	К	NIST Webbook
tf	231.20 ± 1.50	К	NIST Webbook
tf	233.35 ± 0.40	К	NIST Webbook
tf	234.18 ± 0.01	К	NIST Webbook
tf	234.15 ± 0.02	К	NIST Webbook
tf	233.90	К	Aqueous Solubility Prediction Method
tt	234.36	К	Thermodynamics of binary mixtures of N-methyl-2-pyrrolidinone and ketone. Experimental results and modelling of the solid-liquid equilibrium and vapou-liquid equilibrium. The Modified UNIFAC (Do) model characterization
tt	234.16 ± 0.03	K	NIST Webbook
tt	234.16 ± 0.03	K	NIST Webbook
VC	0.336	m3/kmol	KDB
ZC	0.2683960		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	162.13	J/mol×K	423.15	NIST Webbook
cpg	156.77	J/mol×K	403.15	NIST Webbook
cpg	151.38	J/mol×K	383.15	NIST Webbook
cpg	146.31	J/mol×K	364.15	NIST Webbook
cpg	175.14	J/mol×K	473.15	NIST Webbook
cpg	168.70	J/mol×K	448.15	NIST Webbook
cpl	200.70	J/mol×K	298.15	NIST Webbook
cpl	195.70	J/mol×K	298.15	NIST Webbook
cpl	190.30	J/mol×K	298.15	NIST Webbook
cpl	190.00	J/mol×K	298.15	NIST Webbook

cpl	190.90	J/mol×K	298.15	NIST Webbook	
cpl	196.40	J/mol×K	298.15	NIST Webbook	
dvisc	0.0003970	Paxs	308.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Diethyl Oxalate with Some Ketones at (303.15, 308.15, and 313.15) K	
dvisc	0.0004290	Paxs	303.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Diethyl Oxalate with Some Ketones at (303.15, 308.15, and 313.15) K	
dvisc	0.0004714	Paxs	293.15	Viscosities, Densities, and Ultrasonic Velocities of 3-Pentanone + Ethylbenzene and 3-Pentanone + o-Xylene at (293.15, 303.15, and 313.15) K	
dvisc	0.0003880	Paxs	313.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Diethyl Oxalate with Some Ketones at (303.15, 308.15, and 313.15) K	
dvisc	0.0003760	Paxs	313.15	Density and Viscosity of Binary Mixtures of n-Butyl Acetate with Ketones at (298.15, 303.15, 308.15, and 313.15) K	
dvisc	0.0003960	Paxs	308.15	Density and Viscosity of Binary Mixtures of n-Butyl Acetate with Ketones at (298.15, 303.15, 308.15, and 313.15) K	

dvisc	0.0004190	Paxs	303.15	Density and Viscosity of Binary Mixtures of n-Butyl Acetate with Ketones at (298.15, 303.15, 308.15, and 313.15) K	
dvisc	0.0004490	Paxs	298.15	Density and Viscosity of Binary Mixtures of n-Butyl Acetate with Ketones at (298.15, 303.15, 308.15, and 313.15) K	
dvisc	0.0003799	Paxs	313.15	Viscosities, Densities, and Ultrasonic Velocities of 3-Pentanone + Ethylbenzene and 3-Pentanone + o-Xylene at (293.15, 303.15, and 313.15) K	
dvisc	0.0004231	Paxs	303.15	Viscosities, Densities, and Ultrasonic Velocities of 3-Pentanone + Ethylbenzene and 3-Pentanone + o-Xylene at (293.15, 303.15, and 313.15) K	
hfust	11.59	kJ/mol	234.20	NIST Webbook	
hfust	0.11	kJ/mol	118.50	NIST Webbook	
hfust	0.01	kJ/mol	180.00	NIST Webbook	
hfust	11.59	kJ/mol	234.20	NIST Webbook	
hvapt	35.90 ± 0.20	kJ/mol	332.50	NIST Webbook	
hvapt	36.60	kJ/mol	377.50	NIST Webbook	
hvapt	33.70	kJ/mol	461.50	NIST Webbook	
hvapt	33.30	kJ/mol	527.50	NIST Webbook	
hvapt	36.10 ± 0.10	kJ/mol	335.00	NIST Webbook	
hvapt	34.90 ± 0.10	kJ/mol	354.00	NIST Webbook	
hvapt	33.50 ± 0.10	kJ/mol	375.00	NIST Webbook	
hvapt	36.90	kJ/mol	303.00	NIST Webbook	
hvapt	33.45	kJ/mol	375.20	NIST Webbook	
hvapt	36.60	kJ/mol	356.50	NIST Webbook	

rfi	1.39020		298.15	Excess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidone with ketones at T = 303.15 K
rfi	1.39000		298.15	Phase Equilibria in the Binary and Ternary Systems Composed of Diethyl ketone, 2-Pentanone and 3-Pentanol at 101.3 kPa
rhol	809.38	kg/m3	298.15	Excess molar volumes, viscosity deviations and excess thermal expansion coefficients for binary and ternary mixtures consist of diethylketone + 2-butanol + ethylchloroacetate at (298.15, 308.15 and 318.15) K
rhol	809.16	kg/m3	298.15	Thermal and Volumetric Properties of Some C5 and C6 Alkanones at Infinite Dilution in Water
rhol	818.90	kg/m3	288.15	Thermal and Volumetric Properties of Some C5 and C6 Alkanones at Infinite Dilution in Water
rhol	804.62	kg/m3	303.15	Excess molar volumes and ultrasonic studies of dimethylsulphoxide with ketones at T = 303.15 K
rhol	799.32	kg/m3	308.15	Thermal and Volumetric Properties of Some C5 and C6 Alkanones at Infinite Dilution in Water

rhol	789.63	kg/m3	318.15	Excess molar volumes, viscosity deviations and excess thermal expansion coefficients for binary and ternary mixtures consist of diethylketone + 2-butanol + ethylchloroacetate at (298.15, 308.15 and 318.15) K	
rhol	814.00	kg/m3	293.00	KDB	
rhol	809.09	kg/m3	298.15 nc	Excess molar enthalpies and volumes of binary mixtures of onafluorobutyImethylet with ketones at T = 298.15 K	her
rhol	799.55	kg/m3	308.15	Excess molar volumes, viscosity deviations and excess thermal expansion coefficients for binary and ternary mixtures consist of diethylketone + 2-butanol + ethylchloroacetate at (298.15, 308.15 and 318.15) K	
rhol	789.41	kg/m3	318.15	Thermal and Volumetric Properties of Some C5 and C6 Alkanones at Infinite Dilution in Water	
sfust	0.96	J/mol×K	118.50	NIST Webbook	
sfust	0.04	J/mol×K	180.00	NIST Webbook	
sfust	49.50	J/mol×K	234.20	NIST Webbook	
speedsl	1179.00	m/s	308.15	Densities and Speeds of Sound for Binary Liquid Mixtures of Thiolane-I,I-dioxide with Butanone, Pentan-2-one, Pentan-3-one, and 4-Methyl-pentan-2-one at T = (303.15 or 308.15 or 313.15) K	e

speedsl	1160.00	m/s	313.15	Densities and Speeds of Sound for Binary Liquid Mixtures of Thiolane-I,I-dioxide with Butanone, Pentan-2-one, Pentan-3-one, and 4-Methyl-pentan-2-one at T = $(303.15 \text{ or}$ 308.15 or 313.15) K
speedsl	1197.00	m/s	303.15	Densities and Speeds of Sound for Binary Liquid Mixtures of Thiolane-I,I-dioxide with Butanone, Pentan-2-one, Pentan-3-one, and 4-Methyl-pentan-2-one at T = $(303.15 \text{ or}$ 308.15 or 313.15) K
srf	0.02	N/m	319.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	329.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	315.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	317.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K

srf	0.02	N/m	321.15	Thermodynamic
	0.02			investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	313.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	311.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	309.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	307.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	305.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	303.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K

srf	0.02	N/m	323.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	325.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	283.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	301.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	299.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	297.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	295.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K

srf	0.02	N/m	327.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	291.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	289.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	287.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	285.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	293.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K

Correlations

Information

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.47173e+01
Coeff. B	-3.36681e+03
Coeff. C	-4.16190e+01
Temperature range (K), min.	274.94
Temperature range (K), max.	399.57

Information

Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C^*ln(T) + D^*T^2$
Coeff. A	7.00329e+01
Coeff. B	-6.68960e+03
Coeff. C	-8.16282e+00
Coeff. D	5.65048e-06
Temperature range (K), min.	234.18
Temperature range (K), max.	561.00

Datasets

Viscosity, Pa*s

Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid
308.15	101.30	0.0003710
Reference		https://www.doi.org/10.1021/je8003723

Sources

Measurement of vapor.liquid equilibria	https://www.doi.org/10.1016/j.fluid.2007.06.001
(VLE) and excess enthalpies (HE) of Brian is seen when the at infinite dilution	https://www.doi.org/10.1016/j.jct.2015.02.024
and with the second s	https://www.doi.org/10.1016/j.jct.2006.03.003
BARNATINA WEES Properties and A	https://www.doi.org/10.1016/j.fluid.2014.11.020 https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
onygenated to file industry a sind gas	https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
Activity coefficients at infinite dilution of organic solvents and water in 1-butyl-3-methylimidazolium dicyanamide. A literature review of hexane/hex-1-ene separation:	https://www.doi.org/10.1016/j.fluid.2016.02.004

Measurement of activity coefficients at https://www.doi.org/10.1016/j.jct.2013.10.026 infinite dilution of organic solutes in And alkidouquanepyridinium-based ionic the formed gauge provide the second concentration of the s [P8,8,8,8][[NTf2] ionic liquid: Thermodynamics of binary mixtures of Solutes Dissolved in Two Franss Molarceounpressinersity Ionic deviations and excess thermal expansion lacert upges and when young his/sillencemstor/sullengy/beingents

Measurements of activity/coefficients at infinite dilution for organic solutes Anomanum in the kyniska in restraction of ibio-butter in the kyniska in restraction of ibio-butter in the kyniska in restraction of ibio-butter in the kyniska in the same solution of the solution of the same solution of the solution of the period of the solution of the solution of the solution of the solution of the period of the solution of the solution of the period of the solution of the solution of the period of the solution of the solution of the period of the solution of the solution of the period of the solution of the solution of the solution of the period of the solution of the solution of the solution of the period of the solution of the

anjanis pourten and westerne (3030196) igsits bisty: 15) Rthylmorpholinium tricyanomethanide:

https://www.doi.org/10.1016/j.jct.2016.01.017 https://www.doi.org/10.1021/je900711h https://www.doi.org/10.1021/je300085z https://www.doi.org/10.1016/j.fluid.2017.06.001 http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt In StartIn StartIn StartIn StartThe importStartStartStartN-methyl-2-pyrrolidinone and ketone.StartStar https://www.doi.org/10.1016/j.jct.2004.11.007 https://www.doi.org/10.1016/j.tca.2013.03.008 Series in place fillingers and siller on interval to the interval of the interval https://www.doi.org/10.1016/j.jct.2009.01.006 **Solution weils in New Imidazolium and Perfait view Imidazolium and Perfai** https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1196 https://www.cheric.org/files/research/kdb/mol/mol1196.mol ionic Viguid Pressure Data: N,N-diethyl-N-methyl-N-(2-methoxy-ethyl)ammonium https://www.doi.org/10.1016/j.jct.2013.02.004 https://www.doi.org/10.1016/j.fluid.2018.09.024 https://www.doi.org/10.1016/j.jct.2017.11.017 https://www.doi.org/10.1021/je900056u https://www.doi.org/10.1016/j.jct.2013.08.030

Viscosities, Densities, and Ultrasonic Velocities of 3-Pentanone +

Wendsternents and actively apprendicions at xwithite all public is obsystements and actively configuration of a guidity and a guident of a guidity and a guidity of a guidity of a guidity and a guidity of a guidity of a guidity and a guidity of a guidity of a guidity and a guidity of a guidity of a guidity and a guidity of a guidity of a guidity of a guidity and a guidity of a guidity of a guidity of a guidity and a guidity of a guidity of a guidity of a guidity and a guidity of a guidity of a guidity of a guidity and a guidity of a guidity of a guidity of a guidity and a guidity of a guidity of a guidity of a guidity and a guidity of a guidity of a guidity of a guidity and a guidity of a guidity of a guidity of a guidity and a guidity of a guidity of a guidity of a guidity and a guidity of a guidity of a guidity of a guidity of a guidity and a guidity of a guidity of a guidity of a guidity of a guidity and a guidity of a guidi Menanderizante and astrony according into DIRitiWeppwaker:

Activity coefficients at infinite dilution and physicochemical properties for Againty southeights wand initerally inc organic southes and water in the joint and any signature and water in the joint of southes and the souther of the ionic of the southest of the southest of the southest of the of the southest of the southest of the southest of the of the southest of the southest of the southest of the of the southest of the southest of the southest of the of the southest of the southest of the southest of the southest of the of the southest of the southest of the southest of the southest of the of the southest of the southest of the southest of the southest of the of the southest of the southest of the southest of the southest of the of the southest of the southest of the southest of the southest of the of the southest of the southest of the southest of the southest of the of the southest and physicochemical properties for organous source introduced in the source in the so

Measurements of an interaction selectivity in separation Measurements of an initial selection and selection and selection of a selection of a

Rectinite dilution of organic solutes and water with and theoretical study of intraction hetwen pergamic perturbed and theoretical study of perturbed and the study of perturbed and the study of perturbed and the study of percent of the study of the st

https://www.doi.org/10.1016/j.jct.2014.12.027 https://www.doi.org/10.1016/j.jct.2016.08.008 https://www.doi.org/10.1021/je100715x https://www.doi.org/10.1016/j.jct.2014.04.024 https://www.doi.org/10.1016/j.jct.2011.11.025 https://www.doi.org/10.1021/je201129y https://www.doi.org/10.1021/acs.jced.7b00035 http://webbook.nist.gov/cgi/cbook.cgi?ID=C96220&Units=SI https://www.doi.org/10.1016/j.jct.2013.01.007 https://www.doi.org/10.1016/j.jct.2018.01.003 https://www.doi.org/10.1021/je900838a https://www.doi.org/10.1021/je200195q https://www.doi.org/10.1016/j.jct.2012.01.019

https://www.doi.org/10.1021/je030151s

https://www.doi.org/10.1016/j.jct.2012.03.005

https://www.doi.org/10.1016/j.fluid.2018.06.013

Liquid 112:medv:3.aminsund selectivity ridinium https://www.doi.org/10.1016/j.jct.2016.06.028 Separation based vender viva anide in https://www.doi.org/10.1021/je1000582 **Conversion of the second seco** https://www.doi.org/10.1016/j.jct.2013.07.004 http://pubs.acs.org/doi/abs/10.1021/ci990307I Articized and physicochemical properties for observed sontiastiative actinities and physicochemical properties for observed sontiastiative actinities in the infinitie a diution of company is solutes and solution and physicochemical properties for observed sontiastiative actinities in the infinities a diution of company is solutes and solution and physicochemical properties for observed solutes and solution of company is solutes and and physicochemical properties for observed solutes and solution of company is solutes and and physicochemical properties for observed solutes and solution of company is solutes and and physicochemical properties for observed solutes and solution of company is solutes and and physicochemical properties for observed solutes and solution of company is solutes and and physicochemical properties for observed solutes and solution of company is solutes and and physicochemical properties for observed solutes and solution of company is solutes and and any physicochemical properties for bittps://www.doi.org/10.1021/je025651k https://www.doi.org/10.1021/je025651k https://www.doi.org/10.1021/je025651k https://www.doi.org/10.1021/je025651k https://www.doi.org/10.1016/j.jct.2010.021/je025651k https://www.doi.org/10.101 https://www.doi.org/10.1016/j.jct.2013.05.008 https://www.doi.org/10.1016/j.jct.2013.09.007 https://www.doi.org/10.1016/j.jct.2015.05.022 https://www.doi.org/10.1021/acs.jced.9b00726 https://www.doi.org/10.1016/j.jct.2010.05.017 https://www.doi.org/10.1016/j.fluid.2014.06.021 https://www.doi.org/10.1016/j.jct.2017.10.003 https://www.doi.org/10.1021/je100410k https://www.doi.org/10.1016/j.jct.2018.07.024

Legend

af:	Acentric Factor
affp:	Proton affinity
basg:	Gas basicity
chl:	Standard liquid enthalpy of combustion
cpg:	Ideal gas heat capacity
cpl:	Liquid phase heat capacity
dm:	Dipole Moment
dvisc:	Dynamic viscosity
gf:	Standard Gibbs free energy of formation
hf:	Enthalpy of formation at standard conditions
hfl:	Liquid phase enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions
hfust:	Enthalpy of fusion at a given temperature
hvap:	Enthalpy of vaporization at standard conditions
hvapt:	Enthalpy of vaporization at a given temperature
ie:	Ionization energy
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
nfpaf:	NFPA Fire Rating
nfpah:	NFPA Health Rating
pc:	Critical Pressure
pvap:	Vapor pressure
rfi:	Refractive Index
rhoc:	Critical density
rhol:	Liquid Density
rinpol:	Non-polar retention indices
ripol:	Polar retention indices
sfust:	Entropy of fusion at a given temperature
sl:	Liquid phase molar entropy at standard conditions
speedsl:	Speed of sound in fluid
srf:	Surface Tension
tb:	Normal Boiling Point Temperature
tc:	Critical Temperature
tf:	Normal melting (fusion) point
tt:	Triple Point Temperature
VC:	Critical Volume
zc:	Critical Compressibility

Latest version available from:

https://www.chemeo.com/cid/30-912-5/3-Pentanone.pdf

Generated by Cheméo on 2024-04-28 09:04:41.053173669 +0000 UTC m=+16584329.973750995. Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.