D-Alanine

Other names: (S)-(+)-alanine

(S)-2-aminopropanoic acid

.alpha.-alanine Alanine, D-Ba 2776

D(-)-«alpha»-Alanine

D-(-)-Alanine

D-«alpha»-Alanine

L-.alpha.-aminopropionic acid L-2-aminopropanoic acid

L-alanine

InChl=1S/C3H7NO2/c1-2(4)3(5)6/h2H,4H2,1H3,(H,5,6)/t2-/m0/s1

InchiKey: QNAYBMKLOCPYGJ-REOHCLBHSA-N

Formula: C3H7NO2 SMILES: CC(N)C(=O)O

Mol. weight [g/mol]: 89.09 **CAS:** 338-69-2

Physical Properties

Property code	Value	Unit	Source	
chs	-1576.00 ± 3.50	kJ/mol	NIST Webbook	
chs	-1619.60 ± 0.54	kJ/mol	NIST Webbook	
chs	-1639.90	kJ/mol	NIST Webbook	
chs	-1623.00 ± 0.20	kJ/mol	NIST Webbook	
gf	-227.35	kJ/mol	Joback Method	
hf	-341.55	kJ/mol	Joback Method	
hfs	-605.00 ± 3.50	kJ/mol	NIST Webbook	
hfs	-561.24 ± 0.59	kJ/mol	NIST Webbook	
hfus	10.89	kJ/mol	Joback Method	
hvap	55.95	kJ/mol	Joback Method	
log10ws	0.28		Crippen Method	
logp	-0.582		Crippen Method	
mcvol	70.550	ml/mol	McGowan Method	
рс	6046.69	kPa	Joback Method	
SS	132.20	J/mol×K	NIST Webbook	
tb	486.18	K	Joback Method	
tc	677.88	K	Joback Method	

tf	302.58	K	Joback Method
VC	0.252	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	174.01	J/mol×K	613.98	Joback Method
cpg	179.00	J/mol×K	645.93	Joback Method
cpg	151.30	J/mol×K	486.18	Joback Method
cpg	157.40	J/mol×K	518.13	Joback Method
cpg	163.22	J/mol×K	550.08	Joback Method
cpg	168.75	J/mol×K	582.03	Joback Method
cpg	183.73	J/mol×K	677.88	Joback Method
cps	120.80	J/mol×K	296.80	NIST Webbook
hsubt	132.80	kJ/mol	416.50	NIST Webbook
hsubt	138.00 ± 8.00	kJ/mol	461.00	NIST Webbook

Sources

Effect of Potassium Citrate Salts on the https://www.doi.org/10.1021/je800559d Transport Behavior of I-Alanine in Aboreo ad uso minimo a fate representation at the contract of Solutions at 298.15 K: Mode of action of betaine on some amino acids and globular proteins: Thermedynamics en់អាចការផលល់ions of Thermodynamics of the drawardions of a homologous series of some amino actions with the series of a queous solutions have income the control of a queous solutions have income the series of a queous solutions have income the series of a queous solutions have income the series of a queous solutions and the remaining of the series of a queous solutions and the series of the series of

Abertod some in a graph p 193.15 to disso size in the properties of the properties o https://www.doi.org/10.1016/j.jct.2005.10.007 https://www.doi.org/10.1016/j.jct.2017.03.025 https://www.doi.org/10.1016/j.jct.2011.05.012 https://www.doi.org/10.1007/s10765-011-1060-5 https://www.doi.org/10.1016/j.fluid.2016.05.025 https://www.doi.org/10.1021/acs.jced.5b00260 https://www.doi.org/10.1016/j.jct.2013.11.015 https://www.doi.org/10.1016/j.fluid.2017.05.019

https://www.doi.org/10.1016/j.tca.2011.10.013

Temperature Dependences and Acid Eina Materia in one of the state of the

Study of Solvation Behavior of Some **Biologically Active Compounds in** Anterecatio Béa ratighy chinosi the abantine can d -valine with aqueous solutions of appthaireroup reathbutions in ព្យាធិប្រធានាស់ទីនៅទៅព្រះបាននៅdifferent agtives dompounds in aqueous

solutions of antibacterial drug amoxicillin at different temperatures:

https://www.doi.org/10.1021/je500825a Enthalpic Discrimination of Homochiral Palubisty Methae Representation https://www.doi.org/10.1021/acs.jced.7b00486 https://www.doi.org/10.1007/s10765-015-2006-0 https://www.doi.org/10.1021/je700466s https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1021/je400077c https://www.doi.org/10.1016/j.jct.2013.08.010 L-valine with aqueous solutions of three fight interaction of the fight interactions of glycine, L-alanine and Earth and appealing solvent interactions of glycine, L-alanine, the fight interaction of glyc https://www.doi.org/10.1016/j.tca.2016.05.013 https://www.doi.org/10.1021/acs.jced.8b00644 https://www.doi.org/10.1016/j.jct.2016.06.018
https://www.doi.org/10.1016/j.jct.2016.06.018
https://www.doi.org/10.1016/j.jct.2016.06.018
https://www.doi.org/10.1016/j.jct.2016.06.018
https://www.doi.org/10.1016/j.jct.2012.01.015
https://www.doi.org/10.1021/acs.jced.7b00452
https://www.doi.org/10.1021/acs.jced.5b00198
https://www.doi.org/10.1021/acs.jced.6b00367
https://www.doi.org/10.1021/acs.jced.6b00367
https://www.doi.org/10.1021/acs.jced.6b00367
https://www.doi.org/10.1016/j.jct.2012.01.015
https://www.doi.org/10.1016/j.jct.2012.01.016
https://www.doi.org/10.1016/j.jct.2012.01.016
https://www.doi.org/10.1016/j.jct.2012.010
https://www.doi.org/10.1016/j.jct.2012.010
https://www.doi.org/10.1016/j.jct.2012.010
https://www.doi.org/10.1016/j.jct.20 https://www.doi.org/10.1016/j.jct.2016.06.018 https://www.doi.org/10.1016/j.jct.2016.06.030
https://www.doi.org/10.1016/j.jct.2016.06.030 Molecule is in a provided in a Britetion or having principallyes at https://www.doi.org/10.1016/j.jct.2014.03.015

Studies on the Diffusion Coefficients of https://www.doi.org/10.1021/je049582g Amino Acids in Aqueous Solutions: https://www.doi.org/10.1016/j.jct.2019.06.002 Molecular interactions between some amino acids and a pharmaceutically ଇଥିବେ ରଂଜ୍ଞାନ୍ୟାଧ୍ୟ ଅନ୍ୟାମନ https://www.doi.org/10.1016/j.jct.2019.03.011

type-field in the control of the c https://www.doi.org/10.1016/j.jct.2019.03.011 https://www.doi.org/10.1021/acs.jced.7b00257 https://www.doi.org/10.1021/je300953u https://www.doi.org/10.1016/j.jct.2015.10.002 https://www.doi.org/10.1021/je050048y https://www.doi.org/10.1016/j.jct.2011.01.004 https://www.chemeo.com/doc/models/crippen_log10ws fluoride solutions at different thing of the various sodium fluoride solutions at different thing of the various sequences of glycine, L-alainine and L-valine in value of the various sequences of the value of the thiamine hydrochloride in aqueous https://www.doi.org/10.1016/j.jct.2016.03.012 and solling the https://www.doi.org/10.1016/j.jct.2008.07.019 L-Bolling i he val ing i boles ui na anauseous Bunning he val ing i boles ui na anauseous Bunning he val ing i boles ui na anauseous https://www.doi.org/10.1016/j.fluid.2017.01.014 KURINDAS THE BHIDDER BY BUT TEAM 1293.15
BHIDE THE BEST OF THE BUT THE https://www.doi.org/10.1016/j.tca.2005.10.013 https://www.doi.org/10.1021/acs.jced.6b00766 https://www.doi.org/10.1016/j.jct.2017.08.010 https://www.doi.org/10.1016/j.tca.2006.07.009 https://www.doi.org/10.1016/j.jct.2003.09.010 https://www.doi.org/10.1016/j.tca.2005.04.002 town material and of a mino acids to the material and of a materia https://www.doi.org/10.1021/je300083m https://www.doi.org/10.1016/j.tca.2008.10.023 https://www.doi.org/10.1016/j.jct.2013.08.018 Beatfolyide attitudes actions of Some Amino Acids in Etigebols Bottassis Bottassis of Some Amino Acids in Etigebols Bottassis Bot https://www.doi.org/10.1021/acs.jced.5b01031 https://www.doi.org/10.1016/j.fluid.2008.02.015 SALITAN OF THE SEPTEMBERSHIPS nharmagewitical ingredient ionic liquid (API-IL) in the aqueous amino acids

solutions:

https://www.doi.org/10.1016/j.tca.2013.11.006

Effects of Concentration and Temperature on Interactions in (L-Alanine/ L-Threonine/ Glycylglycine + Aqueous Glucose / Aqueous Sucrose) Systems: Insights from is concentration and Temperature of Interaction and Temperature of Interaction and Interactions in Interactions in Interaction and Interactions in Interaction and Interaction

chs: Standard solid enthalpy of combustion

cpg: Ideal gas heat capacitycps: Solid phase heat capacity

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditions

hfs: Solid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions

hsubt: Enthalpy of sublimation at a given temperature **hvap:** Enthalpy of vaporization at standard conditions

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressure

ss: Solid phase molar entropy at standard conditions

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/24-846-6/D-Alanine.pdf

Generated by Cheméo on 2024-04-20 08:14:59.860635742 +0000 UTC m=+15890148.781213067.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.