Sulfuric Acid

Other names:	Acide sulfurique
	Acido solforico
	BOV
	Battery acid
	Dihvdrogen sulfate
	Dipping acid
	Electrolyte acid
	H2SO4
	HYDROGEN SULFATE
	Matting acid
	Mattling acid
	Nordhausen acid
	$\Omega^{2}S(OH)^{2}$
	Schwetelsaeureloesungen
	Spirit of alum
	Spirit of vitriol
	Vitriol brown oil
	Vitriol, oil of
	Zwavelzuuroplossingen
Inchi:	InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)
InchiKey:	QAOWNCQODCNURD-UHFFFAOYSA-N
Formula:	H2O4S
SMILES:	O=S(=O)(O)O
Mol. weight [g/mol]:	98.08
CAS:	7664-93-9

Physical Properties

Property code	Value	Unit	Source
affp	699.40	kJ/mol	NIST Webbook
basg	680.00	kJ/mol	NIST Webbook
basg	666.90	kJ/mol	NIST Webbook
basg	683.00 ± 5.00	kJ/mol	NIST Webbook
ер	4.90	J/mol×K	NIST Webbook
gf	-793.06	kJ/mol	Joback Method

hf	-801.14	kJ/mol	Joback Method
hfpi	500.00 ± 20.00	kJ/mol	NIST Webbook
hfus	15.31	kJ/mol	Joback Method
hvap	67.59	kJ/mol	Joback Method
ie	12.40 ± 0.05	eV	NIST Webbook
log10ws	0.72		Crippen Method
logp	-0.653		Crippen Method
mcvol	50.690	ml/mol	McGowan Method
рс	12942.62	kPa	Joback Method
tb	431.54	К	Joback Method
tc	590.76	К	Joback Method
tf	249.96	К	Joback Method
VC	0.200	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	93.11	J/mol×K	431.54	Joback Method
cpg	95.72	J/mol×K	458.08	Joback Method
cpg	98.26	J/mol×K	484.61	Joback Method
cpg	100.73	J/mol×K	511.15	Joback Method
cpg	103.13	J/mol×K	537.68	Joback Method
cpg	105.43	J/mol×K	564.22	Joback Method
cpg	107.65	J/mol×K	590.76	Joback Method

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.70628e+01
Coeff. B	-6.85442e+03
Coeff. C	-5.92000e+01
Temperature range (K), min.	298.15
Temperature range (K), max.	610.00

Sources

Phase Equilibria for the KHSO4 H2SO4 https://www.doi.org/10.1021/acs.jced.5b00594 H2O and KHSO4 CrO3 H2SO4 H2O Sysemmerylbarbitsing and 2-thiobarbituric acids: An Experimentaland computational study:

Experimental and computational study

Experimental and computational study on the energetics of Networkeystanef 1,3-diethylbarbituric and Calenitteria-study and methylands ethyl Exborne energy and study and study and composition of the study of the study of 6-propyl-2-thiouracil: an experimental and study of p-Aminophenol in Sulfure acid + Water from (286.15 to 362,300, study of 2-thiophenecarboxylic acid study of 2-thiophenecarboxylic acid **Statistics of the second seco**

epsilon-caprolactam and properties of phenoxazine and henoxawazinedbook of Vapor Pressure: Thermochemistry of Cu(II) and Ni(II)

complexes with

Ninchengene in the stand of the stand Modeling of MgSO4*7H2O in the KN904929f29O2M29C3VeteAn: Experimental and Theoretical Study of Heremination of the manager of Formation of the manager of Formation of the manager of the manager of formation of hit obenzenes altenaneides by rotating-bomb combustion calorimetry:

https://www.doi.org/10.1016/j.tca.2015.12.007 https://www.cheric.org/files/research/kdb/mol/mol1916.mol https://www.doi.org/10.1016/j.jct.2013.08.026 https://www.doi.org/10.1016/j.jct.2014.06.001 https://www.doi.org/10.1016/j.jct.2009.03.007 https://www.doi.org/10.1016/j.jct.2008.04.013 https://www.doi.org/10.1016/j.tca.2014.04.018 https://www.doi.org/10.1021/je8008182 https://www.doi.org/10.1021/je049552d https://www.doi.org/10.1016/j.jct.2008.06.011 https://www.doi.org/10.1021/je101012n https://www.doi.org/10.1016/j.jct.2012.09.007 https://www.doi.org/10.1016/j.fluid.2017.04.010 https://www.doi.org/10.1016/j.jct.2016.07.006 https://www.doi.org/10.1016/j.tca.2009.04.012 https://www.doi.org/10.1016/j.jct.2008.02.018 https://www.doi.org/10.1021/je5010142 https://www.doi.org/10.1016/j.jct.2018.12.043 https://www.doi.org/10.1016/j.jct.2018.07.008 Thermodynamic properties of naphthoxazole and naphthothiazole aphtboxazole and naphthothiazole bittps://www.doi.org/10.1016/j.jct.2005.08.008 https://www.doi.org/10.1021/je100020v Solubility of Sodium Naphthalene Disulfonate in Aqueous Solutions of Sulfuric Acid + Dimethylamine + Water Sweitignetion the solubility difference of sodium 4-nitrotoluene-2-sulfonate and Pennity Nincosity IndiSurfach Tennippe at Liquid Inasy Seekmann Renaige and Vincosity of p-Aminophenol in Sulfuric Acid + Water Thermoeuranes mon presses of o 343.15) https://www.doi.org/10.1016/j.jct.2013.11.013 https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure https://www.doi.org/10.1016/j.jct.2007.11.008 complexes with Anthania and the set for the Socium Sulfate + Sulfuric About on the S https://www.doi.org/10.1021/acs.jced.5b01065 https://www.doi.org/10.1021/je200549z https://www.doi.org/10.1016/j.jct.2009.10.003

Revisiting dibenzothiophene thermochemical data: Experimental Enthelipinguational settings and formation of benzenesulfonamide and Mansurementernation for the any minobenzothiazoles in the molecules: N-methylphenothiazine and Apparky Matendixazine:

Sulfur-Containing Ionic Liquids. And computation of chlorhydric Soperior and computational thermochemical studies of 6-azauracil

Crippen Method:

SO2 Solubility in 50 wt % H2SO4 at Elevated Temperatures and Pressures: 2,1,3-Benzothiadiazole: study of its structure, energetics and aromaticity: Experimental and computational Experimental and computational thermochemical study of benzofuran, Nenzothiouide Equilibria dore berana Ques: H2SO4 H2O and MgSO4 H2SO4 H2O Bygationation Bof en of the Arabit vanadium redox flow battery (VII): Englishing the study of benzoft and and the train of benzoft avois derivations and the provided of the study of the stud approaches:

Legend

https://www.doi.org/10.1016/j.jct.2009.05.019 https://www.doi.org/10.1016/j.jct.2011.11.026 https://www.doi.org/10.1016/j.fluid.2015.07.041 solubility of Standardsniholigina and arganion of cid https://www.doi.org/10.1016/j.jct.2014.01.018 https://en.wikipedia.org/wiki/Joback_method Sulfur-Containing lonic Liquids. Rotating-Bomb Combustion Catering-Bomb Combustion Catering-B https://www.doi.org/10.1021/je1009366 http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1016/j.jct.2015.12.020 http://webbook.nist.gov/cgi/cbook.cgi?ID=C7664939&Units=SI https://www.chemeo.com/doc/models/crippen_log10ws https://www.doi.org/10.1021/je4002366 https://www.doi.org/10.1016/j.jct.2012.02.005 https://www.doi.org/10.1016/j.jct.2016.02.008 https://www.doi.org/10.1021/je5004252 https://www.doi.org/10.1016/j.jct.2019.02.020 https://www.doi.org/10.1016/j.jct.2013.06.021 http://pubs.acs.org/doi/abs/10.1021/ci990307I

affp:	Proton affinity
basg:	Gas basicity
срд:	Ideal gas heat capacity
ep:	Protonation entropy at 298K
gf:	Standard Gibbs free energy of formation
hf:	Enthalpy of formation at standard conditions
hfpi:	Enthalpy of formation of positive ion at standard conditions
hfus:	Enthalpy of fusion at standard conditions
hvap:	Enthalpy of vaporization at standard conditions

ie:	Ionization energy
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
pc:	Critical Pressure
pvap:	Vapor pressure
tb:	Normal Boiling Point Temperature
tc:	Critical Temperature
tf:	Normal melting (fusion) point
vc:	Critical Volume

Latest version available from:

https://www.chemeo.com/cid/24-837-6/Sulfuric-Acid.pdf

Generated by Cheméo on 2024-04-29 11:29:05.24403349 +0000 UTC m=+16679394.164610813.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.