Acetonitrile

Other names:	Acetonitril		
	CH3CN		
	Cyanomethane		
	Cyanure de methyl		
	ETHANENITIRILE		
	Ethanenitrile		
	Ethanonitrile		
	Ethyl nitrile		
	Methane, cyano-		
	Methanecarbonitrile		
	Methyl cyanide		
	Methylkyanid		
	NA 1648		
	NCI-C60822		
	Rcra waste number U003		
	UN 1648		
	USAF EK-488		
Inchi:	InChI=1S/C2H3N/c1-2-3/h1H3		
InchiKey:	WEVYAHXRMPXWCK-UHFFFAOYSA-N		
Formula:	C2H3N		
SMILES:	CC#N		
Mol. weight [g/mol]:	41.05		
CAS:	75-05-8		

Physical Properties

Property code	Value	Unit	Source
af	0.3270		KDB
affp	787.40 ± 5.90	kJ/mol	NIST Webbook
affp	779.20	kJ/mol	NIST Webbook
aigt	797.04	К	KDB
basg	748.00	kJ/mol	NIST Webbook
chl	-1270.00	kJ/mol	NIST Webbook
chl	-1247.20 ± 7.20	kJ/mol	NIST Webbook
chl	-1256.33 ± 0.30	kJ/mol	NIST Webbook

cpl	92.36	J/mol×K	Volumes, Heat Capacities, and Compressibilities of the Mixtures of Acetonitrile with N,N-Dimethylacetamide and Propylene Carbonate
cpl	90.93	J/mol×K	Heat capacities of the mixtures of ionic liquids with acetonitrile
dm	3.50	debye	KDB
ea	0.01	eV	NIST Webbook
ea	0.00 ± 0.01	eV	NIST Webbook
ea	0.01	eV	NIST Webbook
fll	4.40	% in Air	KDB
flu	16.00	% in Air	KDB
fpc	278.71	К	KDB
gf	105.70	kJ/mol	KDB
gyrad	1.8210		KDB
hf	87.92	kJ/mol	KDB
hf	74.04 ± 0.37	kJ/mol	NIST Webbook
hf	65.86	kJ/mol	NIST Webbook
hfl	31.40	kJ/mol	NIST Webbook
hfl	40.56 ± 0.40	kJ/mol	NIST Webbook
hfus	2.44	kJ/mol	Joback Method
hvap	33.40	kJ/mol	NIST Webbook
hvap	32.94 ± 0.06	kJ/mol	NIST Webbook
hvap	33.45 ± 0.21	kJ/mol	NIST Webbook
hvap	33.00	kJ/mol	NIST Webbook
hvap	33.00	kJ/mol	NIST Webbook
ie	12.20 ± 0.01	eV	NIST Webbook
ie	12.20 ± 0.01	eV	NIST Webbook
ie	13.14	eV	NIST Webbook
ie	12.21	eV	NIST Webbook
ie	12.46	eV	NIST Webbook
ie	15.11	eV	NIST Webbook
ie	12.19 ± 0.01	eV	NIST Webbook
ie	12.33 ± 0.08	eV	NIST Webbook
ie	12.30 ± 0.25	eV	NIST Webbook
ie	13.11	eV	NIST Webbook
ie	15.12	eV	NIST Webbook
ie	12.20	eV	NIST Webbook
ie	12.38 ± 0.04	eV	NIST Webbook
ie	16.98	eV	NIST Webbook
ie	12.23 ± 0.05	eV	NIST Webbook
ie	12.21 ± 0.00	eV	NIST Webbook
ie	12.20 ± 0.00	eV	NIST Webbook
ie	12.22 ± 0.01	eV	NIST Webbook

ie	12.12 eV NIST W		NIST Webbook
ie	12.19 ± 0.01	12.19 ± 0.01 eV NIST W	
log10ws	0.26	0.26 Estima	
log10ws	0.26	0.26	
logp	0.530		Crippen Method
mcvol	40.420	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=2)		KDB
nfpas	%!d(float64=1)		KDB
рс	4850.00	kPa	KDB
рс	4833.20 ± 81.06	kPa	NIST Webbook
рс	4830.00 ± 81.06	kPa	NIST Webbook
рс	4934.00 ± 3.00	kPa	NIST Webbook
рс	4934.00 ± 20.00	kPa	NIST Webbook
рс	4830.00 ± 20.00	kPa	NIST Webbook
рс	4833.20 ± 81.06	kPa	NIST Webbook
рс	4934.00 ± 3.00	kPa	NIST Webbook
рс	4830.00 ± 20.00	kPa	NIST Webbook
рс	4890.00 ± 10.00	kPa	NIST Webbook
rinpol	450.00		NIST Webbook
rinpol	453.90	453.90	
rinpol	439.00	439.00	
rinpol	452.92	452.92 NIS	
rinpol	452.71		NIST Webbook
rinpol	452.50		NIST Webbook
rinpol	454.52		NIST Webbook
rinpol	452.35		NIST Webbook
rinpol	456.90		NIST Webbook
rinpol	432.00		NIST Webbook
rinpol	455.45		NIST Webbook
rinpol	457.67		NIST Webbook
rinpol	456.69		NIST Webbook
rinpol	455.74		NIST Webbook
rinpol	455.25		NIST Webbook
rinpol	454.45		NIST Webbook
rinpol	453.70		NIST Webbook
rinpol	467.00		NIST Webbook
rinpol	439.00		NIST Webbook
rinpol	455.00		NIST Webbook
rinpol	447.00		NIST Webbook
rinpol	455.00		NIST Webbook
rinpol	464.00		NIST Webbook
rinpol	490.00		NIST Webbook

rinpol	455.00	455.00 NIST Webbo	
rinpol	443.00	443.00 NIST Webboo	
rinpol	452.72	452.72 NIST Webbo	
rinpol	452.00	452.00 NIST Webbo	
rinpol	443.00	443.00 NIST We	
rinpol	447.00		NIST Webbook
rinpol	470.00		NIST Webbook
rinpol	456.00		NIST Webbook
rinpol	500.00		NIST Webbook
rinpol	446.00		NIST Webbook
rinpol	439.00		NIST Webbook
rinpol	453.18		NIST Webbook
rinpol	444.00		NIST Webbook
rinpol	460.00		NIST Webbook
rinpol	440.00		NIST Webbook
rinpol	453.32		NIST Webbook
rinpol	425.00		NIST Webbook
rinpol	464.00		NIST Webbook
rinpol	460.00		NIST Webbook
rinpol	452.53		NIST Webbook
rinpol	447.00		NIST Webbook
rinpol	452.90	452.90 NIST Web	
rinpol	442.00	442.00 NIST Webbo	
ripol	1025.00		NIST Webbook
ripol	1012.00		NIST Webbook
ripol	1026.00		NIST Webbook
ripol	1002.00		NIST Webbook
ripol	1026.00		NIST Webbook
ripol	1030.00	30.00 NIST Webboo	
ripol	1003.00		NIST Webbook
ripol	1013.00		NIST Webbook
ripol	988.00		NIST Webbook
ripol	1013.00		NIST Webbook
ripol	1002.00		NIST Webbook
ripol	1011.00		NIST Webbook
ripol	1045.00		NIST Webbook
ripol	1012.00		NIST Webbook
ripol	1026.00		NIST Webbook
ripol	1045.00		NIST Webbook
ripol	1045.00		NIST Webbook
ripol	1010.00		NIST Webbook
sl	149.62	J/mol×K	NIST Webbook
tb	355.00 ± 0.50	К	NIST Webbook
tb	354.75 ± 0.50	К	NIST Webbook

tb	354.70 ± 2.00	K	NIST Webbook
tb	354.70	К	NIST Webbook
tb	355.15 ± 1.50	К	NIST Webbook
tb	354.80 ± 0.50	К	NIST Webbook
tb	354.00 ± 2.00	K	NIST Webbook
tb	354.90 ± 0.30	К	NIST Webbook
tb	355.00 ± 2.00	К	NIST Webbook
tb	354.90 ± 0.70	К	NIST Webbook
tb	353.00 ± 2.00	К	NIST Webbook
tb	355.00 ± 2.00	К	NIST Webbook
tb	370.55 ± 0.10	К	NIST Webbook
tb	354.25 ± 0.50	К	NIST Webbook
tb	354.60 ± 0.30	К	NIST Webbook
tb	355.00	К	NIST Webbook
tb	354.25 ± 0.30	К	NIST Webbook
tb	354.80	К	NIST Webbook
tb	354.75 ± 0.20	К	NIST Webbook
tb	354.75	К	Isobaric Vapor Liquid Equilibrium for the Acetonitrile + Water System Containing Different Ionic Liquids at Atmospheric Pressure
tb	354.65	К	Vapor-Liquid Equilibria for the Ternary System Acetonitrile + 1-Propanol + Dimethyl Sulfoxide and the Corresponding Binary Systems at 101.3 kPa
tb	354.74	К	Isobaric Vapor-Liquid Equilibrium of the Acetonitrile + 1-Propanol + Ionic Liquids at an Atmospheric Pressure
tb	354.70	К	Acetonitrile Dehydration via Extractive Distillation Using Low Transition Temperature Mixtures as Entrainers
tb	354.25	К	Vapor Liquid Equilibria Measurement of (Methanol + Ethanenitrile + Bis(trifluoromethylsulfonyl) Imide)-Based Ionic Liquids at 101.3 kPa
tb	355.00 ± 2.00	К	NIST Webbook
tb	354.72 ± 0.10	К	NIST Webbook
tb	354.68	К	Measurement and correlation of isobaric vapour-liquid equilibrium for the (acetonitrile + water) system containing different ionic liquids at atmospheric pressure

tb	354.65	К	(Vapour + liquid) equilibria in the ternary system (acetonitrile + n-propanol + ethylene glycol) and corresponding binary systems at 101.3 kPa
tb	353.90 ± 1.50	К	NIST Webbook
tb	354.80 ± 0.30	К	NIST Webbook
tb	354.80 ± 0.30	К	NIST Webbook
tb	354.90 ± 0.20	К	NIST Webbook
tb	354.80 ± 0.30	К	NIST Webbook
tb	354.80 ± 0.60	К	NIST Webbook
tb	354.80 ± 0.40	К	NIST Webbook
tb	354.75 ± 0.30	К	NIST Webbook
tb	354.65	К	The isobaric vapor liquid equilibria of ethyl acetate p acetonitrile p bis(trifluoromethylsulfonyl)imide-based ionic liquids at 101.3 kPa
tb	354.95 ± 1.50	K	NIST Webbook
tb	354.75 ± 0.30	K	NIST Webbook
tb	354.69 ± 0.50	K	NIST Webbook
tb	354.80	K	KDB
tb	354.90 ± 0.60	K	NIST Webbook
tb	354.69 ± 0.30	K	NIST Webbook
tb	355.00 ± 1.50	K	NIST Webbook
tb	355.00 ± 1.50	K	NIST Webbook
tb	354.70 ± 2.00	K	NIST Webbook
tb	354.35 ± 0.50	K	NIST Webbook
tb	354.71 ± 0.20	K	NIST Webbook
tb	354.70	K	NIST Webbook
tb	351.00 ± 3.00	K	NIST Webbook
tb	355.00 ± 0.50	K	NIST Webbook
tb	354.80 ± 0.30	K	NIST Webbook
tb	354.65 ± 0.50	K	NIST Webbook
tb	354.75 ± 0.20	K	NIST Webbook
tb	354.45 ± 0.50	K	NIST Webbook
tb	354.75	K	NIST Webbook
tb	354.80 ± 0.30	К	NIST Webbook
tb	354.75 ± 0.20	К	NIST Webbook
tb	354.80 ± 0.50	K	NIST Webbook
tb	354.70 ± 0.40	К	NIST Webbook
tb	354.80 ± 0.40	K	NIST Webbook
tc	545.50 ± 0.20	K	NIST Webbook
tc	545.50	K	KDB
tc	543.15 ± 1.00	K	NIST Webbook
tc	543.45 ± 1.00	K	NIST Webbook

tc	543.20 ± 2.00	К	NIST Webbook
tc	544.99 ± 0.20	К	NIST Webbook
tc	544.99 ± 0.20	K	NIST Webbook
tc	544.99 ± 0.20	К	NIST Webbook
tc	545.50 ± 0.30	K	NIST Webbook
tc	545.50 ± 0.30	K	NIST Webbook
tf	227.45	к	Aqueous Solubility Prediction Method
tf	229.07	К	Efficient determination of crystallisation and melting points at low cooling and heating rates with novel computer controlled equipment
tf	230.42	K	Experimental (Solid + Liquid) and (Liquid + Liquid) Equilibria and Excess Molar Volume of Alkanol + Acetonitrile, Propanenitrile, and Butanenitrile Mixtures
tf	229.32	K	KDB
tt	229.32 ± 0.02	К	NIST Webbook
VC	0.173	m3/kmol	KDB
ZC	0.1849930		KDB
zra	0.20		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	62.33	J/mol×K	411.95	Joback Method
cpg	72.87	J/mol×K	541.37	Joback Method
cpg	70.38	J/mol×K	509.01	Joback Method
cpg	67.79	J/mol×K	476.66	Joback Method
cpg	56.48	J/mol×K	347.24	Joback Method
cpg	59.46	J/mol×K	379.59	Joback Method
cpg	65.11	J/mol×K	444.30	Joback Method
cpl	91.70	J/mol×K	298.15	NIST Webbook
cpl	91.70	J/mol×K	298.15	NIST Webbook
cpl	81.80	J/mol×K	303.15	NIST Webbook
cpl	77.40	J/mol×K	298.15	NIST Webbook
cpl	91.69	J/mol×K	298.15	NIST Webbook

cpl	92.82	J/mol×K	313.15	Volumetric Properties, Viscosities, and Isobaric Heat Capacities of Imidazolium Octanoate Protic Ionic Liquid in Molecular Solvents	
cpl	92.40	J/mol×K	308.15	Volumetric Properties, Viscosities, and Isobaric Heat Capacities of Imidazolium Octanoate Protic Ionic Liquid in Molecular Solvents	
cpl	92.21	J/mol×K	303.15	Volumetric Properties, Viscosities, and Isobaric Heat Capacities of Imidazolium Octanoate Protic Ionic Liquid in Molecular Solvents	
cpl	91.69	J/mol×K	298.15	Volumetric Properties, Viscosities, and Isobaric Heat Capacities of Imidazolium Octanoate Protic Ionic Liquid in Molecular Solvents	
cpl	82.50	J/mol×K	297.00	NIST Webbook	
cpl	91.46	J/mol×K	298.15	NIST Webbook	
cpl	91.70	J/mol×K	298.15	NIST Webbook	
dvisc	0.0003020	Paxs	323.15 1-But <u>y</u>	Properties of Pure yl-2,3-dimethylimida Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile	zolium
dvisc	0.0003431	Paxs	298.15 1,	Volumetric properties of ionic liquid 3-dimethylimidazoliu methyl sulfate + molecular solvents at T = (298.15 - 328.15) K	ım

dvisc	0.0003000	Paxs	323.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0002800	Paxs	333.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0002600	Paxs	343.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0003443	Pa×s	298.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques
dvisc	0.0003124	Paxs	308.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques

dvisc	0.0002890	Paxs	318.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques
dvisc	0.0002891	Paxs	318.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques
dvisc	0.0003125	Paxs	308.15 Electrical Conductances of 1-Butyl-3-propylimidazolium Bromide and 1-Butyl-3-propylbenzimidazolium Bromide in Water, Methanol, and Acetonitrile at (308, 313, and 318) K at 0.1 MPa
dvisc	0.0003042	Paxs	313.15 Electrical Conductances of 1-Butyl-3-propylimidazolium Bromide and 1-Butyl-3-propylbenzimidazolium Bromide in Water, Methanol, and Acetonitrile at (308, 313, and 318) K at 0.1 MPa
dvisc	0.0002903	Paxs	318.15 Electrical Conductances of 1-Butyl-3-propylimidazolium Bromide and 1-Butyl-3-propylbenzimidazolium Bromide in Water, Methanol, and Acetonitrile at (308, 313, and 318) K at 0.1 MPa

dvisc	0.0003700	Paxs	298.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0002918	Paxs	318.15 Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K
dvisc	0.0003540	Paxs	303.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0003270	Paxs	313.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0002680	Paxs	328.15 Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K
dvisc	0.0002810	Paxs	333.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile

dvisc	0.0002620	Paxs	343.15	Properties of	
			1-Bu	utyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile	
dvisc	0.0003440	Paxs	298.15	Viscosity, Density, and Speed of Sound for the Binary Mixtures of Formamide with 2-Methoxyethanol, Acetophenone, Acetonitrile, 1,2-Dimethoxyethane, and Dimethylsulfoxide at Different Temperatures	
dvisc	0.0003130	Pa×s	308.15	Viscosity, Density, and Speed of Sound for the Binary Mixtures of Formamide with 2-Methoxyethanol, Acetophenone, Acetonitrile, 1,2-Dimethoxyethane, and Dimethylsulfoxide at Different Temperatures	
dvisc	0.0002890	Paxs	318.15	Viscosity, Density, and Speed of Sound for the Binary Mixtures of Formamide with 2-Methoxyethanol, Acetophenone, Acetonitrile, 1,2-Dimethoxyethane, and Dimethylsulfoxide at Different Temperatures	
dvisc	0.0003417	Paxs	298.15	Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K	

dvisc	0.0003280	Paxs	303.15	Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K	
dvisc	0.0003129	Paxs	308.15	Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K	
dvisc	0.0003009	Paxs	313.15	Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K	
dvisc	0.0002899	Paxs	318.15	Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K	
dvisc	0.0003081	Paxs	293.15	Thermodynamic Study of Phenyl Salicylate Solutions in Aprotic Solvents at Different Temperatures	
dvisc	0.0002857	Paxs	298.15	Thermodynamic Study of Phenyl Salicylate Solutions in Aprotic Solvents at Different Temperatures	
dvisc	0.0002642	Paxs	303.15	Thermodynamic Study of Phenyl Salicylate Solutions in Aprotic Solvents at Different Temperatures	

dvisc	0.0002444	Paxs	308.15	Thermodynamic Study of Phenyl Salicylate Solutions in Aprotic Solvents at Different Temperatures
dvisc	0.0002374	Paxs	310.15	Thermodynamic Study of Phenyl Salicylate Solutions in Aprotic Solvents at Different Temperatures
dvisc	0.0002267	Paxs	313.15	Thermodynamic Study of Phenyl Salicylate Solutions in Aprotic Solvents at Different Temperatures
dvisc	0.0003417	Paxs	298.15	The (water + acetonitrile) mixture revisited: A new approach for calculating partial molar volumes
dvisc	0.0003280	Paxs	303.15	The (water + acetonitrile) mixture revisited: A new approach for calculating partial molar volumes
dvisc	0.0003171	Paxs	308.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K
dvisc	0.0003129	Paxs	308.15	The (water + acetonitrile) mixture revisited: A new approach for calculating partial molar volumes
dvisc	0.0003009	Paxs	313.15	The (water + acetonitrile) mixture revisited: A new approach for calculating partial molar volumes

dvisc	0.0002899	Paxs	318.15 The (water + acetonitrile) mixture revisited: A new approach for calculating partial molar volumes
dvisc	0.0003860	Paxs	293.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0003700	Paxs	298.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0003540	Paxs	303.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0003270	Paxs	313.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0003020	Paxs	323.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0002810	Paxs	333.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0002620	Paxs	343.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents

dvisc	0.0003696	Paxs	298.15 Molecular interaction studies and theoretical estimation of ultrasonic speeds using scaled particle theory in binary mixtures of toluene with homologous nitriles at different temperatures
dvisc	0.0003554	Paxs	303.15 Molecular interaction studies and theoretical estimation of ultrasonic speeds using scaled particle theory in binary mixtures of toluene with homologous nitriles at different temperatures
dvisc	0.0003414	Paxs	308.15 Molecular interaction studies and theoretical estimation of ultrasonic speeds using scaled particle theory in binary mixtures of toluene with homologous nitriles at different temperatures
dvisc	0.0003900	Paxs	293.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0003700	Pa×s	298.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile

dvisc	0.0003300	Paxs	313.15 1-H	Viscosities of exyl-3-methylimidazo Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile	blium
dvisc	0.0003500	Paxs	303.15 1-H	Viscosities of exyl-3-methylimidazo Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile	blium
hfust	8.17	kJ/mol	229.30	NIST Webbook	
hvapt	31.38	kJ/mol	352.80	KDB	
hvapt	33.23	kJ/mol	298.15	NIST Webbook	
hvapt	29.75	kJ/mol	354.70	NIST Webbook	
hvapt	33.30	kJ/mol	334.50	NIST Webbook	
hvapt	33.80	kJ/mol	325.00	NIST Webbook	
hvapt	33.90	kJ/mol	290.00	NIST Webbook	
hvapt	34.80	kJ/mol	321.00	NIST Webbook	
hvapt	34.20	kJ/mol	298.00	NIST Webbook	
рvар	122.63	kPa	360.94	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	36.39	kPa	325.02	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	31.31	kPa	321.12	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	24.97	kPa	315.43	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	19.64	kPa	309.64	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	15.27	kPa	303.81	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	

pvap	13.37	kPa	300.82	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
рvар	10.60	kPa	295.78	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
рvар	9.18	kPa	292.75	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
рvар	8.30	kPa	290.65	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
рvар	7.17	kPa	287.67	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
рvар	6.38	kPa	285.38	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
рvар	5.25	kPa	281.57	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
рvар	4.49	kPa	278.62	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
pvap	4.32	kPa	277.92	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
рvар	96.34	kPa	353.10	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
pvap	82.37	kPa	348.25	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol

pvap	69.62	kPa	343.18	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
рvар	58.58	kPa	338.15	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
pvap	54.01	kPa	335.84	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
pvap	49.06	kPa	333.15	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
pvap	45.62	kPa	331.15	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
pvap	41.38	kPa	328.50	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
pvap	37.90	kPa	326.16	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
pvap	33.80	kPa	323.16	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
pvap	30.64	kPa	320.65	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol

рvар	27.78	kPa	318.18	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
рvар	25.72	kPa	316.27	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
рvар	22.65	kPa	313.15	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
рvар	21.13	kPa	311.49	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
рvар	17.52	kPa	307.09	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
рvар	14.15	kPa	302.25	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
рvар	131.21	kPa	363.15	Vapor-Liquid Equilibria for Four Binary Systems at 363.15 K: N-Methylformamide + Hexane, + Benzene, + Chlorobenzene, and + Acetonitrile
pvap	101.30	kPa	354.74	Isobaric Vapor-Liquid Equilibrium of the Acetonitrile + 1-Propanol + Ionic Liquids at an Atmospheric Pressure

рvар	101.32	kPa	354.70	Acetonitrile Dehydration via Extractive Distillation Using Low Transition Temperature Mixtures as Entrainers
рvар	10.00	kPa	295.40	Phase Behavior of Binary Mixtures Containing Succinic Acid or Its Esters
рvар	10.00	kPa	295.25	Phase Behavior of Binary Mixtures Containing Succinic Acid or Its Esters
pvap	101.32	kPa	354.25 Bis	Vapor Liquid Equilibria Measurement of (Methanol + Ethanenitrile + s(trifluoromethylsulfonyl) Imide)-Based Ionic Liquids at 101.3 kPa
pvap	37.00	kPa	325.58 1-et bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	35.65	kPa	324.59 1-et bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	34.49	kPa	323.64 1-et bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

рvар	33.19	kPa	322.64 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	32.94	kPa	322.56 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	32.95	kPa	322.54 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	31.73	kPa	321.65 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	30.52	kPa	320.67 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	29.39	kPa	319.69 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

рvар	28.27	kPa	318.66 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	27.21	kPa	317.72 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	26.11	kPa	316.63 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	125.13	kPa	361.61 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
рvар	25.10	kPa	315.71 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	24.17	kPa	314.79 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

рvар	23.42	kPa	313.77 1-ei bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	22.50	kPa	312.81 1-ei bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	21.55	kPa	311.88 1-ei bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	21.38	kPa	311.79 1-ei bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	20.49	kPa	310.71 1-er bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	19.85	kPa	309.92 1-ei bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

рvар	18.22	kPa	307.95 1-ei bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	17.53	kPa	306.90 1-ei bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	16.96	kPa	306.04 1-ei bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	16.10	kPa	305.01 1-ei bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	15.57	kPa	304.16 1-ei bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	14.18	kPa	302.14 1-ei bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

рvар	13.61	kPa	301.19 1-et bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	12.61	kPa	299.42 1-et bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	12.17	kPa	298.67 1-ei bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	12.05	kPa	298.30 1-et bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	11.60	kPa	297.48 1-ei bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	11.02	kPa	296.44 1-et bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

рvар	10.77	kPa	295.94 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	10.43	kPa	295.33 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	10.03	kPa	294.40 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	9.82	kPa	293.92 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	9.41	kPa	293.21 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	9.16	kPa	292.48 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

рvар	8.60	kPa	291.36 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	8.30	kPa	290.60 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	8.03	kPa	290.09 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium filuoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	7.80	kPa	289.39 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	7.59	kPa	288.83 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	7.56	kPa	288.80 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of hthyl-3-methylimidazolium ifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

рvар	7.50	kPa	288.72 1-et bis(tri	Vapor pressures and activity coefficients of binary mixtures of hyl-3-methylimidazolium fluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	6.75	kPa	286.61 1-et bis(tri	Vapor pressures and activity coefficients of binary mixtures of hyl-3-methylimidazolium fluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	6.59	kPa	286.17 1-et bis(tri	Vapor pressures and activity coefficients of binary mixtures of hyl-3-methylimidazolium fluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	4174.61	kPa	535.03	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
pvap	6.10	kPa	284.56 1-et bis(tri	Vapor pressures and activity coefficients of binary mixtures of hyl-3-methylimidazolium fluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	5.92	kPa	283.81 1-et bis(tri	Vapor pressures and activity coefficients of binary mixtures of hyl-3-methylimidazolium fluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

pvap	5.84	kPa	283.56 1-e bis(ti	Vapor pressures and activity coefficients of binary mixtures of ethyl-3-methylimidazolium rifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	5.64	kPa	283.17 1-e bis(ti	Vapor pressures and activity coefficients of binary mixtures of ethyl-3-methylimidazolium rifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	5.34	kPa	281.91 1-e bis(ti	Vapor pressures and activity coefficients of binary mixtures of ethyl-3-methylimidazolium rifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	4.86	kPa	280.27 1-e bis(ti	Vapor pressures and activity coefficients of binary mixtures of ethyl-3-methylimidazolium rifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
рvар	4.73	kPa	279.81 1-e bis(ti	Vapor pressures and activity coefficients of binary mixtures of ethyl-3-methylimidazolium rifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	4.51	kPa	278.98 1-е bis(ti	Vapor pressures and activity coefficients of binary mixtures of ethyl-3-methylimidazolium rifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

рvар	4.54	kPa	278.88 1-et bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazoliu fluoromethylsulfonyl)in with acetonitrile and tetrahydrofuran	ım nide
рvар	4.44	kPa	278.72 1-et bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazoliu fluoromethylsulfonyl)in with acetonitrile and tetrahydrofuran	ım nide
pvap	96.17	kPa	353.13	Experimental determination and prediction of gas solubility data for oxygen in acetonitrile	
рvар	33.71	kPa	323.12	Experimental determination and prediction of gas solubility data for oxygen in acetonitrile	
pvap	16.47	kPa	305.51	Experimental determination and prediction of gas solubility data for oxygen in acetonitrile	
pvap	101.30	kPa	354.65 bis(trifluc	The isobaric vapor liquid equilibria of ethyl acetate p acetonitrile p promethylsulfonyl)imide ionic liquids at 101.3 kPa	e-based
pvap	155.33	kPa	368.97	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	168.12	kPa	371.74	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	175.04	kPa	373.17	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	

рvар	204.59	kPa	378.81	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	1923.88	kPa	484.77	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	45.91	kPa	331.27	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	55.17	kPa	336.41	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	65.07	kPa	341.18	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	71.24	kPa	343.94 2- 2	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile	
рvар	49.76	kPa	333.57 2- 2	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Ethoxy-2-methylpropane or P-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile	

рvар	18.59	kPa	308.32	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile
рvар	27.19	kPa	317.53	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile
рvар	37.80	kPa	326.03	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile
рvар	43.71	kPa	329.94	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile
рvар	49.76	kPa	333.51	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile

рvар	55.46	kPa	336.56	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile
рvар	60.76	kPa	339.20	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile
рvар	64.81	kPa	341.07	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile
рvар	71.24	kPa	343.86	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile

рvар	75.40	kPa	345.58	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropa or	ane
				and Acetonitrile or Propanenitrile	ne
pvap	80.49	kPa	347.55	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropa or 2-Ethoxy-2-methylbuta and Acetonitrile or Propanenitrile	ane ne
рvар	86.34	kPa	349.69	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropa or 2-Ethoxy-2-methylbuta	ane ne
рvар	92.16	kPa	351.76	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar	
				Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropa or 2-Ethoxy-2-methylbuta and Acetonitrile	ane ne
рvар	99.40	kPa	354.12	or Propanenitrile Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropa or 2-Ethoxy-2-methylbuta and Acetonitrile or Propanenitrile	ane ne

pvap	101.30	kPa	354.75	Isobaric Vapor Liquid Equilibrium for the Acetonitrile + Water System Containing Different Ionic Liquids at Atmospheric Pressure
рvар	75.44	kPa	345.57	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
pvap	1096.90	kPa	453.15	Vapor-Liquid Equilibria on Seven Binary Systems: Ethylene Oxide + 2-Methylpropane; Acetophenone + Phenol; cis-1,3-Dichloropropene + 1,2-Dichloropropane; 1,5-Hexadiene + Allyl Chloride; Isopropyl Acetate + Acetonitrile; Vinyl Chloride + Methyl Chloride; and 1,4-Butanediol + c-Butyrolactone
рvар	33.86	kPa	323.15	Vapor Pressures for the Acetonitrile + Tetrabutylammonium Bromide, Water + Tetrabutylammonium Bromide, and Acetonitrile + Water + Tetrabutylammonium Bromide Systems
c-Butyrolactone				
---	--			
pvap 85.31 kPa 349.33 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry				
pvap 95.59 kPa 352.88 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry				
pvap 100.75 kPa 354.55 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry				
pvap 101.12 kPa 354.67 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry				
pvap 110.61 kPa 357.56 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry				
pvap 235.79 kPa 384.11 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry				
pvap 306.28 kPa 394.29 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry				
pvap 399.50 kPa 405.24 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry				

pvap	502.67	kPa	415.21	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	605.60	kPa	423.68	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	708.99	kPa	431.12	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	804.86	kPa	437.30	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	910.82	kPa	443.50	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	1025.47	kPa	449.60	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	1151.97	kPa	455.74	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	1290.20	kPa	461.87	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	1450.28	kPa	468.37	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	1602.63	kPa	474.05	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	1749.84	kPa	479.15	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	2110.77	kPa	490.37	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	

рvар	2303.51	kPa	495.75	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	2523.66	kPa	501.48	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	2747.95	kPa	506.92	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	2999.22	kPa	512.61	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	3254.08	kPa	518.01	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	3512.89	kPa	523.15	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	3760.37	kPa	527.79	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
рvар	4001.46	kPa	532.08	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	6.47	kPa	285.70 1-et bis(tri	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazol fluoromethylsulfonyl) with acetonitrile and	ium imide
				tetranyuroluran	

рvар	49.16	kPa	333.15 c	Vapor-Liquid Equilibria on Seven Binary Systems: Ethylene Oxide + 2-Methylpropane; Acetophenone + Phenol; is-1,3-Dichloropropene + 1,2-Dichloropropane; 1,5-Hexadiene + Allyl Chloride; Isopropyl Acetate + Acetonitrile; Vinyl Chloride + Methyl Chloride; and 1,4-Butanediol + c-Butyrolactone	
рvар	25.15	kPa	315.79 1-e bis(tr	Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazolium ifluoromethylsulfonyl)imi with acetonitrile and tetrahydrofuran	de
rfi	1.33960		303.15	Liquid liquid equilibria measurements of ternary systems (acetonitrile + a carboxylic acid + dodecane) at 303.15 K	
rfi	1.34160		298.15	Excess Gibbs free energies of the binary mixtures of acetonitrile with butanols at 94.83 kPa	
rfi	1.34160		298.15	(Vapor + liquid) equilibrium of the binary mixtures formed by acetonitrile with selected compounds at 95.5 kPa	

rfi	1.34410	293.15	Experimental study and ERAS modeling of the excess molar enthalpy of (acetonitrile + 1-heptanol or 1-octanol) mixtures at (298.15, 313.15, and 323.15) K and atmospheric pressure	
rfi	1.35900	298.15	Volumetric properties, viscosity and refractive index of the protic ionic liquid, pyrrolidinium octanoate, in molecular solvents	
rfi	1.34390	293.15	Experimental solubility for betulin and estrone in various solvents within the temperature range T = (293.2 to 328.2) K	
rfi	1.34420	293.15	ERAS modeling of the excess molar enthalpies of binary liquid mixtures of 1-pentanol and 1-hexanol with acetonitrile at atmospheric pressure and 288, 298, 313 and 323K	
rfi	1.34110	298.15	Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: Experimental results and application of the Prigogine Flory Patterson theory	

rfi	1.33900	303.15	Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: Experimental results and application of the Prigogine Flory Patterson theory	
rfi	1.33710	308.15	Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: Experimental results and application of the Prigogine Flory Patterson theory	
rfi	1.34180	298.15	Physics and Chemistry of Lithium Halides in 1,3-Dioxolane and Its Binary Mixtures with Acetonitrile probed by Conductometric, Volumetric, Viscometric, Refractometric and Acoustic Study	
rfi	1.34180	298.15	Vapor-Liquid Equilibrium Data for the Binary Methyl Esters (Butyrate, Pentanoate, and Hexanoate) (1) + Acetonitrile (2) Systems at 93.32 kPa	
rfi	1.34300	293.15	Solubilities of Some Phosphaspirocyclic Compounds in Selected Solvents	

rfi	1.34300	293.15 Solubilities of Phosphorus-Containing Compounds in Selected Solvents	
rfi	1.34250	293.15 Isobaric Vapor Liquid Equilibrium for the Extractive Distillation of Acetonitrile + Water Mixtures Using Dimethyl Sulfoxide at 101.3 kPa	
rfi	1.34160	298.15 Acoustic and Volumetric Properties of Binary Mixtures of Ionic Liquid 1-Butyl-3-methylimidazoliu Bis(trifluoromethylsulfonyl)in with Acetonitrile and Tetrahydrofuran	ım nide
rfi	1.34386	293.15 Ternary Liquid Liquid Equilibrium Data for the Water + Acetonitrile + {Butan-1-ol or 2-Methylpropan-1-ol} Systems at (303.2, 323.2, 343.2) K and 1 atm	
rfi	1.34190	298.15 Viscosity, Density, Speed of Sound, and Refractive Index of Binary Mixtures of Organic Solvent + Ionic Liquid, 1-ButyI-3-methylimidazoliu Hexafluorophosphate at 298.15 K	ım
rfi	1.34410	295.10 Ternary Liquid-Liquid Equilibria of Acetonitrile and Water with Heptanoic Acid and Nonanol at 323.15 K and 1 atm	
rfi	1.34139	298.15 Isothermal Vapor-Liquid Equilibrium of Binary Mixtures Containing 1-Chlorobutane, Ethanol, or Acetonitrile	

rfi	1.34390		293.15	A novel static analytical apparatus for phase equilibrium measurements	
rfi	1.34360		293.15	Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: Experimental results and application of the Prigogine Flory Patterson theory	
rhol	760.16	kg/m3	313.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	776.82	kg/m3	298.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	
rhol	782.00	kg/m3	293.00	KDB	
rhol	776.85	kg/m3	298.15	Compressibility Studies of Some Copper(I), Silver(I), and Tetrabutylammonium Salts in Acetonitrile + Adiponitrile Binary Mixtures	1

rhol	754.73	kg/m3	318.15 1-B	Volumetric Properties of Binary Mixtures of utyl-3-methylimidazol Chloride + Water or Hydrophilic Solvents at Different Temperatures	ium
rhol	760.25	kg/m3	313.15 1-B	Volumetric Properties of Binary Mixtures of utyl-3-methylimidazol Chloride + Water or Hydrophilic Solvents at Different Temperatures	ium
rhol	765.75	kg/m3	308.15 1-B	Volumetric Properties of Binary Mixtures of utyl-3-methylimidazol Chloride + Water or Hydrophilic Solvents at Different Temperatures	ium
rhol	771.21	kg/m3	303.15 1-B	Volumetric Properties of Binary Mixtures of utyl-3-methylimidazol Chloride + Water or Hydrophilic Solvents at Different Temperatures	ium
rhol	776.64	kg/m3	298.15 1-B	Volumetric Properties of Binary Mixtures of utyl-3-methylimidazol Chloride + Water or Hydrophilic Solvents at Different Temperatures	ium
rhol	782.04	kg/m3	293.15 1-B	Volumetric Properties of Binary Mixtures of utyl-3-methylimidazol Chloride + Water or Hydrophilic Solvents at Different Temperatures	ium

rhol	726.94	kg/m3	343.15 Densities of Ionic Liquids, 1-ButyI-3-methylimidazolium Hexafluorophosphate and 1-ButyI-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	738.19	kg/m3	333.15 Densities of Ionic Liquids, 1-ButyI-3-methylimidazolium Hexafluorophosphate and 1-ButyI-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	749.73	kg/m3	323.15 Densities of Ionic Liquids, 1-ButyI-3-methylimidazolium Hexafluorophosphate and 1-ButyI-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	760.68	kg/m3	313.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	765.97	kg/m3	308.15 Densities of Ionic Liquids, 1-ButyI-3-methylimidazolium Hexafluorophosphate and 1-ButyI-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K

rhol	771.44	kg/m3	303.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	776.93	kg/m3	298.15 Densities of Ionic Liquids, 1-ButyI-3-methylimidazolium Hexafluorophosphate and 1-ButyI-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	782.30	kg/m3	293.15 Densities of Ionic Liquids, 1-ButyI-3-methylimidazolium Hexafluorophosphate and 1-ButyI-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	755.34	kg/m3	313.15 Densities and Viscosities of Ternary N,N'-Bis(2-pyridylmethylidene)-1,2-diiminoethane Schiff Base + Imidazolium Based Ionic Liquids + Acetonitrile Solutions at T = (298.15 to 313.15) K
rhol	763.20	kg/m3	308.15 Densities and Viscosities of Ternary N,N'-Bis(2-pyridylmethylidene)-1,2-diiminoethane Schiff Base + Imidazolium Based Ionic Liquids + Acetonitrile Solutions at T = (298.15 to 313.15) K

rhol	752.52	kg/m3	313.15 Densities ar Viscosities Ternary N,N'-Bis(2-pyridylmethylidene Schiff Base Imidazoliur Based Ioni Liquids + Acetonitrite Solutions at (298.15 to 313.15) K	nd of +)-1,2-diiminoethane + n c = T =
rhol	761.40	kg/m3	308.15 Densities ar Viscosities Ternary N,N'-Bis(2-pyridylmethylidene Schiff Base Imidazoliur Based Ioni Liquids + Acetonitrik Solutions at (298.15 to 313.15) K	nd of e)-1,2-diiminoethane + n c = T =
rhol	752.55	kg/m3	313.15 Densities ar Viscosities Ternary N,N'-Bis(2-pyridylmethylidene Schiff Base Imidazoliur Based Ioni Liquids + Acetonitrile Solutions at (298.15 to 313.15) K	nd of e)-1,2-diiminoethane + n c = T =
rhol	760.00	kg/m3	308.15 Densities ar Viscosities Ternary N,N'-Bis(2-pyridylmethylidene Schiff Base Imidazoliur Based Ioni Liquids + Acetonitrile Solutions at (298.15 to 313.15) K	nd of e)-1,2-diiminoethane + n c = T =
rhol	768.14	kg/m3	303.15 Densities ar Viscosities Ternary N,N'-Bis(2-pyridylmethylidene Schiff Base Imidazoliur Based Ioni Liquids + Acetonitrile Solutions at (298.15 to 313.15) K	nd of e)-1,2-diiminoethane + n c = T =

rhol	755.36	kg/m3	313.15 N,N'-Bis(2-pyr	Densities and Viscosities of Ternary ridylmethylidene)-1,2-diiminoethane Schiff Base + Imidazolium Based Ionic Liquids + Acetonitrile Solutions at T = (298.15 to 313.15) K
rhol	761.45	kg/m3	308.15 N,N'-Bis(2-pyr	Densities and Viscosities of Ternary ridylmethylidene)-1,2-diiminoethane Schiff Base + Imidazolium Based Ionic Liquids + Acetonitrile Solutions at T = (298.15 to 313.15) K
rhol	771.43	kg/m3	303.15 N,N'-Bis(2-pyr	Densities and Viscosities of Ternary ridylmethylidene)-1,2-diiminoethane Schiff Base + Imidazolium Based Ionic Liquids + Acetonitrile Solutions at T = (298.15 to 313.15) K
rhol	776.65	kg/m3	298.15 N,N'-Bis(2-pyr	Densities and Viscosities of Ternary ridylmethylidene)-1,2-diiminoethane Schiff Base + Imidazolium Based Ionic Liquids + Acetonitrile Solutions at T = (298.15 to 313.15) K
rhol	754.85	kg/m3	318.15 1-B	Density, Viscosity, Speed of Sound, and Refractive Index of a Ternary Solution of Aspirin, utyl-3-methylimidazolium Bromide, and Acetonitrile at Different Temperatures T = (288.15 to 318.15) K

rhol	765.81	kg/m3	308.15 Density, Viscosity, Speed of Sound, and Refractive Index of a Ternary Solution of Aspirin, 1-Butyl-3-methylimidazolium Bromide, and Acetonitrile at Different Temperatures T = (288.15 to 318.15) K
rhol	776.62	kg/m3	298.15 Density, Viscosity, Speed of Sound, and Refractive Index of a Ternary Solution of Aspirin, 1-Butyl-3-methylimidazolium Bromide, and Acetonitrile at Different Temperatures T = (288.15 to 318.15) K
rhol	787.39	kg/m3	288.15 Density, Viscosity, Speed of Sound, and Refractive Index of a Ternary Solution of Aspirin, 1-Butyl-3-methylimidazolium Bromide, and Acetonitrile at Different Temperatures T = (288.15 to 318.15) K
rhol	726.43	kg/m3	343.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquids with Molecular Solvents
rhol	737.86	kg/m3	333.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquids with Molecular Solvents

rhol	749.11	kg/m3	323.15 1-Alk	Volumetric Properties of Binary Mixtures of Two yl-3-Methylimidazoli Tetrafluoroborate Ionic Liquids with Molecular Solvents	um
rhol	760.18	kg/m3	313.15 1-Alk <u>y</u>	Volumetric Properties of Binary Mixtures of Two yl-3-Methylimidazoli Tetrafluoroborate Ionic Liquids with Molecular Solvents	um
rhol	771.13	kg/m3	303.15 1-Alk	Volumetric Properties of Binary Mixtures of Two yl-3-Methylimidazoli Tetrafluoroborate Ionic Liquids with Molecular Solvents	um
rhol	771.10	kg/m3	303.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	776.55	kg/m3	298.15 1-Alk	Volumetric Properties of Binary Mixtures of Two yl-3-Methylimidazoli Tetrafluoroborate Ionic Liquids with Molecular Solvents	um
rhol	781.95	kg/m3	293.15 1-Alk <u>y</u>	Volumetric Properties of Binary Mixtures of Two yl-3-Methylimidazoli Tetrafluoroborate Ionic Liquids with Molecular Solvents	um

rhol	776.62	kg/m3	298.15	Calorimetric Study of Nitrile Group-Solvent Interactions and Comparison with Dispersive Quasi-Chemical (DISQUAC) Predictions	
rhol	760.20	kg/m3	313.15	Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents	
rhol	765.68	kg/m3	308.15	Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents	
rhol	771.12	kg/m3	303.13	Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents	
rhol	776.52	kg/m3	298.15	Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents	
rhol	781.89	kg/m3	293.15	Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents	
rhol	749.07	kg/m3	323.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	

rhol	749.07	kg/m3	323.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	749.11	kg/m3	323.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	749.07	kg/m3	323.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	760.16	kg/m3	313.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	760.15	kg/m3	313.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	

rhol	760.18	kg/m3	313.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile
rhol	776.53	kg/m3	298.15 1-E	Volumetric Properties of the Ionic Liquid, Butyl-3-methylimidazolium Tetrafluoroborate, in Organic Solvents at T = 298.15 K
rhol	765.65	kg/m3	308.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile
rhol	765.66	kg/m3	308.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile
rhol	765.64	kg/m3	308.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile

rhol	771.11	kg/m3	303.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	771.11	kg/m3	303.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	771.10	kg/m3	303.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	776.53	kg/m3	298.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	776.53	kg/m3	298.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	

rhol	776.53	kg/m3	298.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	776.53	kg/m3	298.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	781.93	kg/m3	293.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	781.93	kg/m3	293.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	781.93	kg/m3	293.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	

rhol	781.93	kg/m3	293.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	787.31	kg/m3	288.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	787.31	kg/m3	288.13	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	787.31	kg/m3	288.13	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	787.31	kg/m3	288.13	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	

rhol	749.25	kg/m3	323.15 Effect of Solvents and Temperature on Interactions in Binary and Ternary Mixtures of 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate with Acetonitrile or/and N,N-Dimethylformamide
rhol	754.82	kg/m3	318.15 Effect of Solvents and Temperature on Interactions in Binary and Ternary Mixtures of 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate with Acetonitrile or/and N,N-Dimethylformamide
rhol	760.34	kg/m3	313.15 Effect of Solvents and Temperature on Interactions in Binary and Ternary Mixtures of 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate with Acetonitrile or/and N,N-Dimethylformamide
rhol	765.83	kg/m3	308.15 Effect of Solvents and Temperature on Interactions in Binary and Ternary Mixtures of 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate with Acetonitrile or/and N,N-Dimethylformamide
rhol	771.29	kg/m3	303.15 Effect of Solvents and Temperature on Interactions in Binary and Ternary Mixtures of 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate with Acetonitrile or/and N,N-Dimethylformamide

rhol	776.71	kg/m3	298.15 1- T	Effect of Solvents and Temperature on Interactions in Binary and Ternary Mixtures of Butyl-3-methylimidazoli Trifluoromethanesulfona with Acetonitrile or/and N,N-Dimethylformamide	um te
rhol	785.71	kg/m3	298.15	Liquid-Liquid Equilibrium for Ternary Systems, Water + 5-Hydroxymethylfurfura + (1-Butanol, Isobutanol, Methyl Isobutyl Ketone), at 313.15, 323.15, and 333.15 K	al
rhol	749.44	kg/m3	323.15	The Thermodynamic and Excess Properties of Trialkyl-Substituted Imidazolium-Based Ionic Liquids with Thiocyanate and Its Binary Systems with Acetonitrile	
rhol	755.14	kg/m3	318.15	The Thermodynamic and Excess Properties of Trialkyl-Substituted Imidazolium-Based Ionic Liquids with Thiocyanate and Its Binary Systems with Acetonitrile	
rhol	760.36	kg/m3	313.15	The Thermodynamic and Excess Properties of Trialkyl-Substituted Imidazolium-Based Ionic Liquids with Thiocyanate and Its Binary Systems with Acetonitrile	

rhol	765.83	kg/m3	308.15	The Thermodynamic and Excess Properties of Trialkyl-Substituted Imidazolium-Based Ionic Liquids with Thiocyanate and Its Binary Systems with Acetonitrile
rhol	771.12	kg/m3	303.15	The Thermodynamic and Excess Properties of Trialkyl-Substituted Imidazolium-Based Ionic Liquids with Thiocyanate and Its Binary Systems with Acetonitrile
rhol	776.52	kg/m3	298.15	The Thermodynamic and Excess Properties of Trialkyl-Substituted Imidazolium-Based Ionic Liquids with Thiocyanate and Its Binary Systems with Acetonitrile
rhol	781.89	kg/m3	293.15	The Thermodynamic and Excess Properties of Trialkyl-Substituted Imidazolium-Based Ionic Liquids with Thiocyanate and Its Binary Systems with Acetonitrile
rhol	787.58	kg/m3	288.15	The Thermodynamic and Excess Properties of Trialkyl-Substituted Imidazolium-Based Ionic Liquids with Thiocyanate and Its Binary Systems with Acetonitrile

rhol	749.16	kg/m3	323.15 Density, Electrical Conductivity, Dynamic Viscosity, Excess Properties, and Molecular Interactions of Ionic Liquid 1-CyanopropyI-3-methylimidazolium Tetrafluoroborate and Binary System with Acetonitrile
rhol	754.72	kg/m3	318.15 Density, Electrical Conductivity, Dynamic Viscosity, Excess Properties, and Molecular Interactions of Ionic Liquid 1-CyanopropyI-3-methylimidazolium Tetrafluoroborate and Binary System with Acetonitrile
rhol	760.25	kg/m3	313.15 Density, Electrical Conductivity, Dynamic Viscosity, Excess Properties, and Molecular Interactions of Ionic Liquid 1-CyanopropyI-3-methylimidazolium Tetrafluoroborate and Binary System with Acetonitrile
rhol	765.73	kg/m3	308.15 Density, Electrical Conductivity, Dynamic Viscosity, Excess Properties, and Molecular Interactions of Ionic Liquid 1-CyanopropyI-3-methylimidazolium Tetrafluoroborate and Binary System with Acetonitrile

rhol	771.18	kg/m3	303.15 Density, Electrical Conductivity, Dynamic Viscosity, Excess Properties, and Molecular Interactions of Ionic Liquid 1-CyanopropyI-3-methylimidazolium Tetrafluoroborate and Binary System with Acetonitrile
rhol	776.61	kg/m3	298.15 Density, Electrical Conductivity, Dynamic Viscosity, Excess Properties, and Molecular Interactions of Ionic Liquid 1-CyanopropyI-3-methylimidazolium Tetrafluoroborate and Binary System with Acetonitrile
rhol	781.96	kg/m3	293.15 Density, Electrical Conductivity, Dynamic Viscosity, Excess Properties, and Molecular Interactions of Ionic Liquid 1-Cyanopropyl-3-methylimidazolium Tetrafluoroborate and Binary System with Acetonitrile
rhol	787.33	kg/m3	288.15 Density, Electrical Conductivity, Dynamic Viscosity, Excess Properties, and Molecular Interactions of Ionic Liquid 1-Cyanopropyl-3-methylimidazolium Tetrafluoroborate and Binary System with Acetonitrile

rhol	749.25	kg/m3	323.15 1-Eth Trifl	Excess Molar Volumes, Excess Molar Isentropic Compressibilities, Viscosity Deviations, and Activation Parameters for nyl-3-methyl-imidazoliu uoro-methanesulfonat + Dimethyl Sulfoxide and/or Acetonitrile at T = 298.15 to 323.15 K and P = 0.1 MPa	um :e
rhol	754.82	kg/m3	318.15 1-Eth Trifl	Excess Molar Volumes, Excess Molar Isentropic Compressibilities, Viscosity Deviations, and Activation Parameters for nyl-3-methyl-imidazoliu uoro-methanesulfonat + Dimethyl Sulfoxide and/or Acetonitrile at T = 298.15 to 323.15 K and P = 0.1 MPa	um :e
rhol	760.34	kg/m3	313.15 1-Etr Trifl	Excess Molar Volumes, Excess Molar Isentropic Compressibilities, Viscosity Deviations, and Activation Parameters for nyl-3-methyl-imidazoliu uoro-methanesulfonat + Dimethyl Sulfoxide and/or Acetonitrile at T = 298.15 to 323.15 K and P = 0.1 MPa	um ie
rhol	765.83	kg/m3	308.15 1-Etr Trifl	Excess Molar Volumes, Excess Molar Isentropic Compressibilities, Viscosity Deviations, and Activation Parameters for nyl-3-methyl-imidazoliu uoro-methanesulfonat + Dimethyl Sulfoxide and/or Acetonitrile at T = 298.15 to 323.15 K and P = 0.1 MPa	um :e

rhol	771.29	kg/m3	303.15 1-Et Tri	Excess Molar Volumes, Excess Molar Isentropic Compressibilities, Viscosity Deviations, and Activation Parameters for thyl-3-methyl-imidazo fluoro-methanesulfor + Dimethyl Sulfoxide and/or Acetonitrile at T = 298.15 to 323.15 K and P = 0.1 MPa	olium nate
rhol	776.71	kg/m3	298.15 1-Et Tri	Excess Molar Volumes, Excess Molar Isentropic Compressibilities, Viscosity Deviations, and Activation Parameters for thyl-3-methyl-imidazo fluoro-methanesulfor + Dimethyl Sulfoxide and/or Acetonitrile at T = 298.15 to 323.15 K and P = 0.1 MPa	blium nate
rhol	748.99	kg/m3	323.15	Excess Enthalpies in Binary Systems of Isomeric C8 Aliphatic Monoethers with Acetonitrile and Their Description by the COSMO-SAC Model	
rhol	754.56	kg/m3	318.15	Excess Enthalpies in Binary Systems of Isomeric C8 Aliphatic Monoethers with Acetonitrile and Their Description by the COSMO-SAC Model	
rhol	760.10	kg/m3	313.15	Excess Enthalpies in Binary Systems of Isomeric C8 Aliphatic Monoethers with Acetonitrile and Their Description by the COSMO-SAC Model	

rhol	765.59	kg/m3	308.15	Excess Enthalpies in Binary Systems of Isomeric C8 Aliphatic Monoethers with Acetonitrile and Their Description by the COSMO-SAC Model
rhol	771.06	kg/m3	303.15	Excess Enthalpies in Binary Systems of Isomeric C8 Aliphatic Monoethers with Acetonitrile and Their Description by the COSMO-SAC Model
rhol	776.51	kg/m3	298.15	Excess Enthalpies in Binary Systems of Isomeric C8 Aliphatic Monoethers with Acetonitrile and Their Description by the COSMO-SAC Model
rhol	776.68	kg/m3	298.15	Exploration of Solvation Consequence of Ionic Liquid [Bu4PCH3SO3] in Various Solvent Systems by Conductance and FTIR Study
rhol	765.77	kg/m3	308.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	773.30	kg/m3	303.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data

rhol	776.66	kg/m3	298.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	782.06	kg/m3	293.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	787.44	kg/m3	288.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	792.79	kg/m3	283.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	798.12	kg/m3	278.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butyIresorcin[4]arene in non-aqueous solvents
rhol	755.59	kg/m3	318.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K
rhol	760.90	kg/m3	313.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K

rhol	766.21	kg/m3	308.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K
rhol	771.52	kg/m3	303.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K
rhol	765.98	kg/m3	308.10	Synthesis of 1,3-Dimethylimidazolium Chloride and Volumetric Property Investigations of Its Aqueous Solution
rhol	782.12	kg/m3	293.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K
rhol	760.00	kg/m3	313.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures

rhol	771.00	kg/m3	303.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures	
rhol	782.00	kg/m3	293.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures	
rhol	771.00	kg/m3	303.15	Thermodynamic and transport properties of acetonitrile + alkanediols liquid mixtures at different temperatures, experimental measurements and modeling	
rhol	776.00	kg/m3	298.15	Thermodynamic and transport properties of acetonitrile + alkanediols liquid mixtures at different temperatures, experimental measurements and modeling	
rhol	782.00	kg/m3	293.15	Thermodynamic and transport properties of acetonitrile + alkanediols liquid mixtures at different temperatures, experimental measurements and modeling	

rhol	755.59	kg/m3	318.15	Densities and volumetric properties of (acetonitrile + alkyl acrylate monomer) binary mixtures at temperatures from 293.15 K to 318.15 K	
rhol	760.90	kg/m3	313.15	Densities and volumetric properties of (acetonitrile + alkyl acrylate monomer) binary mixtures at temperatures from 293.15 K to 318.15 K	
rhol	766.21	kg/m3	308.15	Densities and volumetric properties of (acetonitrile + alkyl acrylate monomer) binary mixtures at temperatures from 293.15 K to 318.15 K	
rhol	771.52	kg/m3	303.15	Densities and volumetric properties of (acetonitrile + alkyl acrylate monomer) binary mixtures at temperatures from 293.15 K to 318.15 K	
rhol	776.82	kg/m3	298.15	Densities and volumetric properties of (acetonitrile + alkyl acrylate monomer) binary mixtures at temperatures from 293.15 K to 318.15 K	
rhol	782.12	kg/m3	293.15	Densities and volumetric properties of (acetonitrile + alkyl acrylate monomer) binary mixtures at temperatures from 293.15 K to 318.15 K	

rhol	782.10	kg/m3	293.15	Measurement and correlation of the vapor-liquid equilibrium for methanol + acetonitrile + imidazolium-based ionic liquids at 101.3 kPa	
rhol	777.00	kg/m3	298.15	Measurement and correlation of solubility and solution thermodynamics of 1,3-dimethylurea in different solvents from T = (288.15 to 328.15) K	
rhol	777.10	kg/m3	298.15	Solubility and solution thermodynamics of thymol in six pure organic solvents	
rhol	765.75	kg/m3	308.15	Volumetric properties of binary mixtures of (acetonitrile + amines) at several temperatures with application of the ERAS model	
rhol	771.20	kg/m3	303.15	Volumetric properties of binary mixtures of (acetonitrile + amines) at several temperatures with application of the ERAS model	
rhol	776.61	kg/m3	298.15	Volumetric properties of binary mixtures of (acetonitrile + amines) at several temperatures with application of the ERAS model	

rhol	782.01	kg/m3	293.15	Volumetric properties of binary mixtures of (acetonitrile + amines) at several temperatures with application of the ERAS model	
rhol	776.30	kg/m3	298.15	Solubility and solution thermodynamics of sorbic acid in eight pure organic solvents	
rhol	776.62	kg/m3	298.15	lonic molar volumes in methanol mixtures with acetonitrile, N,N-dimethylformami and propylene carbonate at T = 298.15 K	de
rhol	759.55	kg/m3	313.15	Solution thermodynamics of thylene-bis(salicyliden	eiminato)-chloride
				in binary mixtures of N,N-dimethylformami and acetonitrile at T = (298.15, 303.15, 308.15 and 313.15) K	de
rhol	765.26	kg/m3	308.15	Solution thermodynamics	
			iron(III)-N,N'-e	thylene-bis(salicylidene in binary mixtures of N,N-dimethylformami and acetonitrile at T = (298.15, 303.15, 308.15 and 313.15) K	eiminato)-chloride de
rhol	771.56	kg/m3	303.15	Solution thermodynamics	
			iron(III)-N,N'-e	thylene-bis(salicylidene in binary mixtures of N,N-dimethylformami and acetonitrile at T = (298.15, 303.15, 308.15 and 313.15) K	eiminato)-chloride de

rhol	776.47	kg/m3	298.15	Solution thermodynamics	
			iron(III)-N,N'-etł	nylene-bis(salicylideneiminato)-chlorid in binary mixtures of N,N-dimethylformamide and acetonitrile at T = (298.15, 303.15, 308.15 and 313.15) K	le
rhol	776.74	kg/m3	298.15	Probing subsistence of ion-pair and triple-ion of an ionic salt in liquid environments by means of conductometric contrivance	
rhol	771.19	kg/m3	303.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory	
rhol	776.62	kg/m3	298.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory	
rhol	782.01	kg/m3	293.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory	
rhol	787.38	kg/m3	288.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory	
rhol	776.60	kg/m3	298.15	Density and speed of sound of lithium bromide with organic solvents: Measurement and correlation	
------	--------	-------	--------	--	--
rhol	755.70	kg/m3	318.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	761.00	kg/m3	313.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	766.30	kg/m3	308.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	771.50	kg/m3	303.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	776.80	kg/m3	298.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	782.10	kg/m3	293.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	

rhol	776.53	kg/m3	298.15 1-n·	Volumetric and compressibility behaviour of ionic liquid, -butyl-3-methylimidazolium hexafluorophosphate and tetrabutylammonium hexafluorophosphate in organic solvents at T = 298.15 K
rhol	776.69	kg/m3	298.15	Standard partial molar volumes of some electrolytes in ethylene carbonate based mixtures
rhol	782.10	kg/m3	293.15	Effect of imidazolium-based ionic liquid on vapor-liquid equilibria of 2-propanol + acetonitrile binary system at 101.3 kPa
rhol	776.64	kg/m3	298.15	Liquid liquid equilibria in the ternary systems {hexadecane + BTX aromatics + 2-methoxyethanol or acetonitrile} at 298.15 K
rhol	776.55	kg/m3	298.15	Liquid-liquid equilibrium data for ternary mixtures composed of n-hexane, benzene and acetonitrile at (298.15, 308.15, and 318.15) K
rhol	783.38	kg/m3	293.15	Isobaric vapor liquid equilibrium for binary system of methanol and acetonitrile
rhol	786.50	kg/m3	293.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data

rhol	760.50	kg/m3	313.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data
rhol	766.50	kg/m3	308.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data
rhol	771.23	kg/m3	303.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	781.10	kg/m3	298.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data
rhol	776.50	kg/m3	298.15	Bubble point measurements of binary mixtures formed by 1-hexanol with selected nitro-compounds and substituted benzenes at 95.6 kPa

speedsl	1278.62	m/s	298.15 Application of Prigogine Flory Patterson theory to excess molar volume and speed of sound of 1-n-butyl-3-methylimidazolium hexafluorophosphate or 1-n-butyl-3-methylimidazolium tetrafluoroborate in methanol and acetonitrile
speedsl	1299.01	m/s	293.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-PropyI-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K
speedsl	1278.77	m/s	298.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-PropyI-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K
speedsl	1258.73	m/s	303.15 Application of Prigogine Flory Patterson theory to excess molar volume and speed of sound of 1-n-butyl-3-methylimidazolium hexafluorophosphate or 1-n-butyl-3-methylimidazolium tetrafluoroborate in methanol and acetonitrile

speedsl	1238.66	m/s	308.15 Application of Prigogine Flory Patterson theory to excess molar volume and speed of sound of 1-n-butyl-3-methylimidazolium hexafluorophosphate or 1-n-butyl-3-methylimidazolium tetrafluoroborate in methanol and acetonitrile
speedsl	1239.00	m/s	308.15 Ultrasonic studies on binary mixtures of some aromatic ketones with acetonitrile at T = 308.15 K
speedsl	1319.14	m/s	288.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-PropyI-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K
speedsl	1218.52	m/s	313.15 Application of Prigogine Flory Patterson theory to excess molar volume and speed of sound of 1-n-butyl-3-methylimidazolium hexafluorophosphate or 1-n-butyl-3-methylimidazolium tetrafluoroborate in methanol and acetonitrile
speedsl	1198.32	m/s	318.15 Application of Prigogine Flory Patterson theory to excess molar volume and speed of sound of 1-n-butyl-3-methylimidazolium hexafluorophosphate or 1-n-butyl-3-methylimidazolium tetrafluoroborate in methanol and acetonitrile

speedsl	1278.62	m/s	298.15 Volumetric and Speed of Sound of Ionic Liquid, 1-ButyI-3-methylimidazolium Hexafluorophosphate with Acetonitrile and Methanol at T) (298.15 to 318.15) K
speedsl	1238.66	m/s	308.15 Volumetric and Speed of Sound of Ionic Liquid, 1-ButyI-3-methylimidazolium Hexafluorophosphate with Acetonitrile and Methanol at T) (298.15 to 318.15) K
speedsl	1218.52	m/s	313.15 Volumetric and Speed of Sound of Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate with Acetonitrile and Methanol at T) (298.15 to 318.15) K
speedsl	1198.32	m/s	318.15 Volumetric and Speed of Sound of Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate with Acetonitrile and Methanol at T) (298.15 to 318.15) K
speedsl	1281.30	m/s	298.15 Compressibility Studies of Binary Solutions Involving Water as a Solute in Nonaqueous Solvents at T) 298.15 K
speedsl	1278.28	m/s	298.15 Thermodynamic Properties of Inorganic Salts in Nonaqeous Solvents. IV. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Bromides and Chlorides in Acetonitrile

speedsl	1238.40	m/s	$\begin{array}{ccc} 308.15 & Volumetric and \\ Isentropic \\ Compressibility \\ Behavior of Ionic \\ Liquid, \\ 1-PropyI-3-Methylimidazolium \\ Bromide in \\ Acetonitrile, \\ Dimethylformamide, \\ and \\ Dimethylsulfoxide \\ at T = (288.15 to \\ 308.15) \ K \end{array}$
speedsl	1258.51	m/s	$\begin{array}{ccc} 303.15 & Volumetric and \\ & Isentropic \\ & Compressibility \\ & Behavior of Ionic \\ & Liquid, \\ 1-PropyI-3-Methylimidazolium \\ & Bromide in \\ & Acetonitrile, \\ & Dimethylformamide, \\ & and \\ & Dimethylsulfoxide \\ & at T = (288.15 to \\ & 308.15) \ K \end{array}$
speedsl	1258.73	m/s	303.15 Volumetric and Speed of Sound of Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate with Acetonitrile and Methanol at T) (298.15 to 318.15) K
srf	0.03	N/m	298.15 Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide
srf	0.03	N/m	298.15 Surface tension of non-ideal binary and ternary liquid mixtures at various temperatures and p = 81.5 kPa
srf	0.03	N/m	283.15 Surface tension of non-ideal binary and ternary liquid mixtures at various temperatures and p = 81.5 kPa

srf	0.03	N/m	308.15	Surface tension of non-ideal binary and ternary liquid mixtures at various temperatures and p = 81.5 kPa	
srf	0.03	N/m	308.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile	
srf	0.03	N/m	303.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile	
srf	0.03	N/m	293.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide	
srf	0.03	N/m	293.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile	
srf	0.03	N/m	288.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile	
srf	0.03	N/m	283.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile	

srf	0.03	N/m	278.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile	
srf	0.03	N/m	293.20	KDB	
srf	0.03	N/m	303.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide	
srf	0.03	N/m	308.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide	
srf	0.03	N/m	313.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide	
srf	0.03	N/m	298.15 1-al bis[(tri 1-bu bis[(tri	Physicochemical properties of two kyl-1-methylpyrrolidinium fluoromethyl)sulfonyl]imide ionic liquids and of binary mixtures of utyl-1-methylpyrrolidinium fluoromethyl)sulfonyl]imide with methanol or acetonitrile	
srf	0.03	N/m	288.15 1-al bis[(tri 1-bu bis[(tri	Physicochemical properties of two kyl-1-methylpyrrolidinium fluoromethyl)sulfonyl]imide ionic liquids and of binary mixtures of ityl-1-methylpyrrolidinium fluoromethyl)sulfonyl]imide with methanol or acetonitrile	

srf	0.03	N/m	308.15 1-a bis[(tr 1-b bis[(tr	Physicochemical properties of two lkyl-1-methylpyrrolidir ifluoromethyl)sulfonyl ionic liquids and of binary mixtures of utyl-1-methylpyrrolidir ifluoromethyl)sulfonyl with methanol or acetonitrile	ium]imide 1ium]imide
srf	0.03	N/m	313.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile	
srf	0.03	N/m	293.15	Density and Surface Tension of Binary Mixtures of Acetonitrile + 1-Alkanol at 293.15 K	
srf	0.03	N/m	298.15	Experimental Data and Correlation of Surface Tensions of the Binary and Ternary Systems of Water + Acetonitrile + 2-Propanol at 298.15 K and Atmospheric Pressure	
srf	0.03	N/m	293.15 1-E Bis[(ti	Surface Tensions and the Gibbs Excess Surface Concentration of Binary Mixtures of the Ionic Liquid thyl-3-methylimidazo rifluoromethyl)sulfony with Tetrahydrofuran and Acetonitrile	lium]imide
srf	0.03	N/m	308.15 1-E Bis[(ti	Surface Tensions and the Gibbs Excess Surface Concentration of Binary Mixtures of the Ionic Liquid thyl-3-methylimidazol rifluoromethyl)sulfonyl with Tetrahydrofuran and Acetonitrile	lium]imide

srf	0.03	N/m	313.15 Surface Tensions and the Gibbs Excess Surface Concentration of Binary Mixtures of the Ionic Liquid 1-Ethyl-3-methylimidazolium Bis[(trifluoromethyl)sulfonyl]imide with Tetrahydrofuran and Acetonitrile
srf	0.03	N/m	303.13 Surface Tensions and the Gibbs Excess Surface Concentration of Binary Mixtures of the Ionic Liquid 1-EthyI-3-methylimidazolium Bis[(trifluoromethyI)sulfonyI]imide with Tetrahydrofuran and Acetonitrile
srf	0.03	N/m	298.15 Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile
srf	0.03	N/m	298.15 Surface Tensions and the Gibbs Excess Surface Concentration of Binary Mixtures of the Ionic Liquid 1-EthyI-3-methylimidazolium Bis[(trifluoromethyI)sulfonyI]imide with Tetrahydrofuran and Acetonitrile
svapt	111.44	J/mol×K	298.15 NIST Webbook
tcondl	0.20	W/m×K	293.15 Liquid Thermal Conductivities of Acetonitrile, Diethyl Sulfide, Hexamethyleneimine, Tetrahydrothiophene, and
			Tetramethylethylenediamine
tcondl	0.21	W/m×K	273.15 Liquid Thermal Conductivities of Acetonitrile, Diethyl Sulfide, Hexamethyleneimine, Tetrahydrothiophene, and Tetramethylethylenediamine

tcondl	0.18	W/m×K	313.15 Liquid Thermal Conductivities of Acetonitrile, Diethyl Sulfide, Hexamethyleneimine, Tetrahydrothiophene, and Tetramethylethylenediamine	

Correlations

Information	Value
Property code	руар
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.53562e+01
Coeff. B	-3.64591e+03
Coeff. C	-1.52630e+01
Temperature range (K), min.	229.32
Temperature range (K), max.	545.50

Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C^*ln(T) + D^*T^2$
Coeff. A	4.10590e+01
Coeff. B	-4.99962e+03
Coeff. C	-3.88171e+00
Coeff. D	3.51596e-06
Temperature range (K), min.	229.32
Temperature range (K), max.	545.50

Datasets

Mass density, kg/m3

Pressure, kPa - Liquid	Temperature, K - Liquid	Mass density, kg/m3 - Liquid
200.00	313.15	755.0
200.00	353.15	710.0

600.00	313.15	755.0
600.00	353.15	711.0
600.00	393.15	664.0
1000.00	313.15	756.0
1000.00	353.15	711.0
1000.00	393.15	664.0
1000.00	433.15	611.0
1400.00	313.15	756.0
1400.00	353.15	711.0
1400.00	393.15	665.0
1400.00	433.15	612.0
1800.00	313.15	757.0
1800.00	353.15	712.0
1800.00	393.15	666.0
1800.00	433.15	614.0
1800.00	473.15	550.0
2000.00	313.15	757.0
2000.00	353.15	713.0
2000.00	393.15	666.0
2000.00	433.15	614.0
2000.00	473.15	552.0

Reference

https://www.doi.org/10.1021/je900048r

Refractive index (Na D-line)

Pressure, kPa - Liquid	Temperature, K - Liquid	Refractive index (Na D-line) - Liquid
81.50	298.15	1.3417
Reference		https://www.doi.org/10.1021/je700645p

Sources

Vapor-Liquid Equilibria for Four Binary Systems at 363.15 K: Aquidth under the state of the stat dilution:

Vapor-Liquid Equilibria for Four Binary https://www.doi.org/10.1021/je020130i https://www.doi.org/10.1021/acs.jced.8b01193 https://www.doi.org/10.1016/j.jct.2016.11.023 https://www.doi.org/10.1021/je800817b https://www.doi.org/10.1016/j.fluid.2018.09.024

Thermodynamic study of solubility for 2-amino-4-chloro-6-methoxypyrimidine 2-amino-4-chloro-6-methoxypyrimidine minister and the second seco organic esoluties and water in the fonic (partong 2- water xy and shared in the fonic supervision of the second states in the second states and the solution of the second states in the second states of the solution of the second second states in the Systems of 4-Methyl-1,3-dioxolan-2-one Densibilities and (bould BF4] +

Actional and the second second

water-acetonitrile mixtures at 298.15 K: Measurement and Correlation of the Solubility of 5-Fluorouracil in Pure and Bolubility of 5-Fridorouracian in Fure and Bolubility monsurement and thermodynamic model correlation of Salubility and twervengd was been ts: Modeling of Dimethyl Terephthalate in Polurgene and the state of the https://www.doi.org/10.1021/acs.jced.91 https://www.doi.org/10.1021/acs.jced.91 https://www.doi.org/10.1021/acs.jced.91 https://www.doi.org/10.1021/acs.jced.91 https://www.doi.org/10.1021/acs.jced.91 https://www.doi.org/10.1021/acs.jced.91 Party Selvents and the Evaluation of the Main & InHuberties of the Solutions: Is Board Synder with the Solution for the Entractive Signification of Solution Selvent and Wars (1991) Solution Solution Solution Solution of Solutions Infinite Dilution Activity Coefficients of Solutes Dissolved in Two Pahewijtk af Antropy for the formation of the second s

Experimental solubility of diosgenin

Unerproduce and Propylene Carbonate:

https://www.doi.org/10.1016/j.jct.2016.10.020 https://www.doi.org/10.1021/acs.jced.9b00243 https://www.doi.org/10.1021/acs.jced.9b00406 https://www.doi.org/10.1016/j.fluid.2008.09.011 https://www.doi.org/10.1021/acs.jced.9b00232 https://www.doi.org/10.1016/j.jct.2013.05.008 https://www.doi.org/10.1016/j.jct.2012.03.026 https://www.doi.org/10.1016/j.jct.2016.10.014 https://www.doi.org/10.1021/je401056v reverse and the fermittie of the second of t https://www.doi.org/10.1021/je900048r https://www.doi.org/10.1021/acs.jced.5b00838 https://www.doi.org/10.1021/je4009816 1-phosphabicyclo[2.2.2]octane https://www.doi.org/10.1016/j.jct.2013.07.004 Soluwitter of Gamelianin id.dn Methanol, Acetonitrike Acetone Intellianin id.dn Methanol, Attractive Acetone Intellianin id.dn Methanol, Attractive Acetone Intellianin id.dn Methanol, Attractive Acetone Intellianin id.dn Methanol, Methanol, Methanol, https://www.doi.org/10.1016/j.jct.2018.02 https://www.doi.org/10.1016/j.jct.2018.02 https://www.doi.org/10.1016/j.jct.2016.11 https://www.doi.org/10.1016/j.jct.2010.01 https://www.doi.org/10.1016/j.jct.2010.01 https://www.doi.org/10.1016/j.jct.2010.01 https://www.doi.org/10.1016/j.jct.2010.01 https://www.doi.org/10.1016/j.jct.2010.01 https://www.doi.org/10.1016/j.jfluid.2011. https://www.doi.org/10.1016/j.fluid.2011. https://www.doi.org/10.1021/je900554r https://www.doi.org/10.1016/j.fluid.2016.10.009 https://www.doi.org/10.1021/acs.jced.8b00551 https://www.doi.org/10.1016/j.jct.2018.09.017 https://www.doi.org/10.1016/j.jct.2016.11.029 https://www.doi.org/10.1016/j.jct.2010.01.013 http://webbook.nist.gov/cgi/cbook.cgi?ID=C75058&Units=SI https://www.doi.org/10.1016/j.fluid.2011.09.016 https://www.doi.org/10.1021/acs.jced.8b00425 https://www.doi.org/10.1021/acs.jced.9b00693 https://www.doi.org/10.1021/acs.jced.9b00658 https://www.doi.org/10.1021/je400531a https://www.doi.org/10.1021/je100341q https://www.doi.org/10.1021/je500050p https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1386 https://www.doi.org/10.1016/j.jct.2016.11.017 Experimental solubility of diosgenin and estriol in various solvents between Petergination and estriol in the solubility of 1-Serine in Eight EBAS non-peters Solvents sames souplar entablement of solvent sames souplar entablement and estriol mixtures of petergination of the source and estrict in the solvent of the source and the solvent of the source and compressibilities of the Mixtures of Actability Petergination, Modeling, and https://www.doi.org/10.1021/acs.jced.9b00360

Sebibility Determination, Modeling, and https://www.doi.org/10.1021/acs.jced.9b00360

https://www.doi.org/10.1021/je200616t

Experimental and theoretical study of interaction between organic Therpocheramics of fenofibrate and

Separation of one price of the sector of the and Molecular Interactions of Ionic Liquid

1-Cyanopropyl-3-methylimidazolium Tetrafluoroborate and Binary System with Acetonitrile:

https://www.doi.org/10.1016/j.fluid.2014.06.021 Experimental and theoretical study of interaction between organic characterized study of interaction between organic characterized study of interaction between organic characterized study of the study of characterized study of the study of the study of characterized study of the https://www.doi.org/10.1016/j.fluid.2014.01.029 https://www.doi.org/10.1016/j.fluid.2013.09.028 https://www.doi.org/10.1021/acs.jced.9b00350 https://www.doi.org/10.1016/j.jct.2012.05.017 https://www.doi.org/10.1016/j.jct.2016.12.002 https://www.doi.org/10.1016/j.jct.2016.08.026 https://www.doi.org/10.1016/j.jct.2006.08.007 https://www.doi.org/10.1016/j.jct.2008.05.012 https://www.doi.org/10.1016/j.fluid.2013.06.037 https://www.doi.org/10.1016/j.fluid.2016.03.008 https://www.doi.org/10.1016/j.fluid.2018.01.015 https://www.doi.org/10.1016/j.jct.2012.08.016 Not construct a properties for
variable of the second structure of the second stru https://www.doi.org/10.1021/acs.jced.6b00163 https://www.doi.org/10.1021/je1007235 https://www.doi.org/10.1021/acs.jced.8b01181 https://www.doi.org/10.1021/acs.jced.5b00190 https://www.doi.org/10.1021/acs.jced.7b00898

Thermodynamic Models for Determination of the Solubility of the (he) constraints and the solution of th

Ester in Selected Solvents: Conductivities of Binary Mixtures of Ionic Liquids with Polar Solvents: Determination of Activity Coefficients Determination of Activity Coefficients https://www.doi.org/10.1021/acs.jced.86 at Infinite Dilution of Organic Solutes in the QSAS Moural ENTHALPIES OF DIPROMOVE THANS WETHVIII in dazolium Nershow at the Solution of Solutes in the Solution of Organic Solutes in

organic solvents: Experimental Heasupervention attract notion and bility afore individual to a solution of the Alight Careers volume (278.15 https://www.doi.org/10.102//jeso0735) Alight Careers volume (278.15 https://www.doi.org/10.1016/j.jct.2015.11.025 www.doi.org/10.1016/j.jct.2015.11.025 www.doi.org/10.1016/j.jct.20

Activity Coefficients at Infinite Dilution

Activity Coefficients at Infinite Dilution of Organic Compounds in Selections reflective soft of the s Servents at Temperatures from (248.2 Means reprint and Correlation of the Solubility of Enrofloxacin in Different Scapents invite 333245760422105594. binary mixtures formed by acetonitrile Annu secological of a secological secologi volume and speed of sound of 1-n-butyl-3-methylimidazolium hexafluorophosphate or 1-n-butyl-3-methylimidazolium tetrafluoroborate in methanol and acetonitrile:

https://www.doi.org/10.1021/je500991b

The industration of the Solubility of the first modeling of a discontrained with the solubility of the first modeling of a discontrained with the solubility of the first modeling of a discontrained with the solubility of the first modeling of a discontrained with the solubility of the first modeling of a discontrained with the solubility of the first modeling of the excess molar enthalpy because of the

https://www.doi.org/10.1021/je800468h

https://www.doi.org/10.1021/acs.jced.8b00080

https://www.doi.org/10.1016/j.tca.2010.01.005

https://www.doi.org/10.1016/j.fluid.2018.11.011

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1386

https://www.doi.org/10.1016/j.fluid.2011.09.027

https://www.doi.org/10.1016/j.jct.2016.07.001

https://www.doi.org/10.1021/je900733j

https://www.doi.org/10.1021/je800754w

https://www.doi.org/10.1016/j.jct.2013.01.007

https://www.doi.org/10.1021/acs.jced.7b00206

https://www.doi.org/10.1021/je5002158

https://www.doi.org/10.1016/j.jct.2007.03.007

Interpretation of Association Behavior

+ Acetonitrile + Limonene System at

1,3,5-Triacetyl-hexahydro-s-triazine: Vapor pressures and activity Vapor pressures and activity coefficients of binary mixtures of eauwated Selwalithdazelium Isatrinobroaned Fisal Hali Miademine Selvantine of Branch Selvation and Selvation Selvation and Babarin d/an pobilitin d Fauilio Motor Anthracene Dissolved in Alcohol + Activity and the solves of version of the solves of the solves of version of the solves of Acid in Pure and Methanol + Water Binary Solvents from T = (278.25 to 323.55) K:

Interpretation of Association Behavior and Molecular Interactions in Binary Ministes and A Transition could this Binary Ministes and A Transition could be ministed to the could this Binary Ministes and A Transition could be ministed to the coul https://www.doi.org/10.1007/s10765-016-2096-3 Liquid-Liquid Equilibrium for the Water https://www.doi.org/10.1021/je050066f + Acetonitrile + Limonene System at Sirie value of the remodynamic modeling of thermodynamic modelin https://www.doi.org/10.1016/j.jct.2016.09.038 https://www.doi.org/10.1021/acs.jced.8b01205 https://www.doi.org/10.1016/j.jct.2014.12.025 https://www.doi.org/10.1016/j.jct.2016.06.028 https://www.doi.org/10.1016/j.jct.2015.12.004 https://www.doi.org/10.1016/j.jct.2014.08.012 https://www.doi.org/10.1016/j.fluid.2014.01.008 https://www.doi.org/10.1016/j.jct.2014.04.020 https://www.doi.org/10.1016/j.jct.2011.09.022 https://www.doi.org/10.1021/acs.jced.9b00562 https://www.doi.org/10.1021/acs.jced.5b00167

https://www.doi.org/10.1016/j.fluid.2017.09.007 https://www.doi.org/10.1021/acs.jced.9b00458 https://www.doi.org/10.1021/acs.jced.5b00995 by barrin 2 frage properties and correlation by barring the model of the minipage properties of the minipage properises of the minipage properties of the m https://www.doi.org/10.1016/j.jct.2018.12.044 https://www.doi.org/10.1016/j.jct.2016.11.030 https://www.doi.org/10.1021/acs.jced.7b00615 https://www.doi.org/10.1021/acs.jced.6b00816

Solubility of Trimethoprim in Selected Pure Solvents and (Water + Entending-Maganemmiked Solvent Shermosynamic Modeling of Bawensuilierezasentes Runamenseringelya organis, k compornds with the ionic liquids 298/118/99/98/45, iaa@1328459 Ky

on vapor-liquid equilibria of 2-propanol Factorium on the state of the second s Experindernambeternnatiken of Mirkletes Containing Jonic Liquids. 9. Activity Coefficient and the characteristic of the contained of the characteristic of the contained of the

Active the contractive states of the states

the pool of the providence of the pool of the pool of the pool of the providence of the providence of the pool of

Neat Solvents from 283.15 to 323.15 K: Solubility of

3,3'-(Oxidi-2,1-ethanediyl)bis[1-methyl-imidazolium] Direstantuoropio synchions fratee,lubility https://www.doi.org/10.1016/j.jct.2017.02.017 gethanon-cethuriejanic-ionnine.organic sethuring frational synchions fratee in the structure of the st

https://www.doi.org/10.1021/acs.jced.5b00616 https://www.doi.org/10.1021/acs.jced.6b00230 https://www.doi.org/10.1016/j.fluid.2007.01.024 https://www.doi.org/10.1016/j.jct.2012.09.017 Antoning information period of sector of the https://www.doi.org/10.1016/j.jct.2018.08.028 **Zberrfjoglysiastien and 28 gtjy ity** coefficients at infinite dilution for Activity coefficients at infinite dilution for an vapor-liguid equilibria of 2-propanol https://www.doi.org/10.1021/acs.jced.8b01051 https://www.doi.org/10.1021/je050440b

https://www.doi.org/10.1016/j.jct.2019.07.002 https://www.doi.org/10.1021/je7001094 https://www.doi.org/10.1016/j.jct.2017.04.014 https://www.doi.org/10.1016/j.jct.2016.07.050 https://www.doi.org/10.1016/j.fluid.2016.02.004

https://www.doi.org/10.1016/j.fluid.2014.04.006

Activitiocoefficient in the pliketion solution is presented and water in a plugility netiline interiment in the pliketion a plugility netiline interiment in the pliketion a plugility netiline interiment in the plugility of https://www.doi.org/10.1016/j.jct.2015.02.004 https://www.doi.org/10.1016/j.jct.2014.02.021 https://www.doi.org/10.1016/j.jct.2014.12.023 https://www.doi.org/10.1016/j.jct.2012.08.022 https://www.doi.org/10.1016/j.fluid.2014.12.013 Light of light of the second s

http://www.ddbst.com/en/EED/VLE/VLE%20Acetonitrile%3B1,2-Ethanediol.php

https://www.doi.org/10.1021/je501026m

Solubility in Binary Solvent Mixtures: Pyrene Dissolved in Alcohol + ternary liquid mixtures at various competitures therpodyno rea-functions of tepuconazole in nine

With powers of equilibria in the
https://withoutage/initian

With powers of equilibria in the</t

An and a set with the set of the

1-Hexyl-3-methylimidazolium Teaunoevosorias and astraithary The armoely opposites and astightery prefine in the provided in the provided

activity coefficients at infinite dilution for organic solutes and water in the ionic liquid

https://www.doi.org/10.1021/je020226c Automationsmithermitication and https://www.doi.org/10.1016/j.jct.2010.09.003 **Explaints of the product and the product and the product of the p** https://www.doi.org/10.1016/j.jct.2016.11.032 https://www.doi.org/10.1007/s10765-009-0651-x https://www.doi.org/10.1021/je8007099 https://www.doi.org/10.1021/acs.jced.9b00331 https://www.doi.org/10.1021/je900609f https://www.doi.org/10.1021/je100489z https://www.doi.org/10.1021/je100033s **Difference of the end of the end** https://www.doi.org/10.1016/j.fluid.2010.08.010 https://www.doi.org/10.1021/acs.jced.6b00911 https://www.doi.org/10.1007/s10765-008-0395-z https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure https://www.doi.org/10.1021/acs.jced.9b00696 https://www.doi.org/10.1021/je060138i https://www.doi.org/10.1021/acs.jced.8b00684 https://www.doi.org/10.1016/j.fluid.2018.06.013

N,N-diethyl-N-methyl-N-(2-methoxy-ethyl)ammonium bis(trifluoromethylsulfonyl)imide:

Solubility of

https://www.doi.org/10.1016/j.jct.2017.01.006 2-nitro-p-phenylenediamine in nine

Ebilitative account and one of the second and one of the second and the second an สหกรุลลูเอ็ปประเทศเซเซอร์ Shithaum binary mixtures of acetonitrile with อิติโปลีปีเริ่มสาวใส่เรลเหตุ in Different Organic Solvents and Ethanol + Water Brian wance net amom (278. 1876b 313.15) thermodynamic properties of Compressibility Behavior of Ionic Engline and the second second

infinite dilution in Selection of the se teatingerore of the liquid: 2,5-thiophenedicarboxylic acid in different organic solvents:

Massevents and Gaxteletion (Methanol https://www.doi.org/10.1021/acs.jced.9b00490 Aunitity of Warboridge ac intron 2 Pure https://www.doi.org/10.1021/acs.jced.6b00664 Solubality of the second second of the second secon https://www.doi.org/10.1016/j.fluid.2018.07.028 Liquid E Liquid Edulf brit and Excess With the service of the ser https://www.doi.org/10.1016/j.fluid.2007.03.019 https://www.doi.org/10.1021/acs.jced.7b01085 https://www.doi.org/10.1016/j.fluid.2015.01.002 https://www.doi.org/10.1021/je400781b https://www.doi.org/10.1016/j.jct.2011.04.010 https://www.doi.org/10.1016/j.jct.2019.05.011 https://www.doi.org/10.1016/j.jct.2006.07.014 https://www.doi.org/10.1021/je8007815 https://www.doi.org/10.1016/j.jct.2019.06.018 https://www.doi.org/10.1007/s10765-009-0648-5 https://www.doi.org/10.1021/je200252c https://www.doi.org/10.1016/j.jct.2015.05.019 https://www.doi.org/10.1021/acs.jced.5b00192 Measurement of activity coefficients at https://www.doi.org/10.1016/j.jct.2007.01.004 https://www.doi.org/10.1016/j.fluid.2014.05.003

Volumetric and compressibility behaviour of ionic liquid,

Exploration of fonce inquid, Exploration a solution connectuence bekanisdrights Shatechie Connectuence bekanisdright Shatechie Connectuence bekanist Son and Shatechie Connectuence becanistic and solution in the solution of Sortubriting Mondeling of

Therrepervnamic Modeling of Buy breaking and Bilisi the zim ral bimer tent to invest and microsoftworth and the second secon

liquid

https://www.doi.org/10.1016/j.jct.2005.07.018 https://www.doi.org/10.1021/acs.jced.5b00670 https://www.doi.org/10.1021/acs.jced.8b00288 https://www.doi.org/10.1021/je025660t Activities of the second of th https://www.doi.org/10.1021/acs.jced.5b01053 https://www.doi.org/10.1016/j.jct.2016.12.014 https://www.doi.org/10.1021/je9003178 https://www.doi.org/10.1021/acs.jced.7b00316 https://www.doi.org/10.1021/acs.jced.9b00778 https://www.doi.org/10.1016/j.jct.2017.01.004 https://www.doi.org/10.1021/je060134d Activity coefficients at infinite dilution of organic solutes in Solutifismating bifferent Supercritical CO2Contaitions Different Supercritical Superc https://www.doi.org/10.1016/j.fluid.2012.05.006 https://www.doi.org/10.1016/j.jct.2018.09.023 https://www.doi.org/10.1016/j.jct.2018.09.023 https://www.doi.org/10.1016/j.jct.2018.09.023 https://www.doi.org/10.1016/j.jct.2018.09.023 https://www.doi.org/10.1016/j.jct.2019.06.007 https://www.doi.org/10.1021/acs.jced.9b00028 https://www.doi.org/10.1021/je800404f https://www.doi.org/10.1021/je80404f https://www.doi.org/10.1021/je80404f https://www.doi.org/10.1021/je80404f https://www.doi.org/10.1021/je80404f https://www.doi.org/10.1021/je80404f https://www.doi.org/10.1021/acs.jced.9b00172 https://www.doi.org/10.1021/acs.jced.9b00172 https://www.doi.org/10.1021/acs.jced.9b00172 https://www.doi.org/10.1021/acs.jced.9b00172 https://www.doi.org/10.1021/acs.jced.9b00172 https://www.doi.org/10.1021/acs.jced.9b00278 https://www.doi.org/10.1021/acs.jced.9b00278

4-(2-methoxyethyl)-4-methylmorpholinium bis(trifluoromethylsulfonyl)-amide:

Determination and correlation of solubilities of

solubilities of spansic values of the Accelestification of the space proverse Solvents from T = (283.15 fcostaults) of 20 delaron area value of the solvents from T = (283.15 fcostaults) of 20 delaron area value of the solvents from T = (283.15 fcostaults) of 20 delaron area value of the solvents from T = (283.15) footal to solven the solvents from T = (283.15) footal to solven the solvent of the solven

(2) # 30 io 5 / 20 io 5 / 40 io 7 / troxerutin solubility in elèven then bestruedynamic randlexens + Properties politically belassifierte the solubility in elèven the solubility in

BAURY INDERING BUSCHIDISALE INTYLE CONTROLLING SEALER INFORMED BUCKIDIA Few of Intersurger in and Serrelation of Isothermal Vapor-Liquid Equilibrium Detay for Ace Systems As interaction of Ace of the Second Second Second Detay for the Second Second Second Detay for the Second Second Second Second Detay for the Second Second Second Second Detay for the Second Second Second Second Second Detay for the Second Se for Binary Mixtures of Ionic Liquid

Selvisi interview intervi

Munacy initiation composed of Article at Occanic Solventand 318.15) K: Electrical Conductances of

1-Butyl-3-propylimidazolium Bromide and user appropylimidazolium Bromide bridi user a water nick and ded y by three at water nick and ded y actachter appropriate the second and actachter and the second and actachter and the second liquid determination of the solid-liquid determination of the solid-liquid Denniteriul/if 60 bity to char an event shart chefra church and comments Sharthord of an event Shar Reinianity) of the senter and the sector of ghid education of the sector flunixin meglumine in pure and binary solvents:

https://www.doi.org/10.1016/j.fluid.2013.09.058

https://www.doi.org/10.1016/j.fluid.2015.06.039

https://www.doi.org/10.1021/je0600855

https://www.doi.org/10.1021/je800658v

https://www.doi.org/10.1021/acs.jced.9b00854

https://www.doi.org/10.1016/j.fluid.2005.02.016

https://www.doi.org/10.1021/je1002237

https://www.doi.org/10.1016/j.fluid.2014.01.043

http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl file/ci034243xsi20040112 053635.txt

High damage and several and the https://www.doi.org/10.1021/acs.jced.7b00585 https://www.doi.org/10.1016/j.fluid.2014.01.033 https://www.doi.org/10.1021/je8006088 https://www.doi.org/10.1021/je300339q https://www.doi.org/10.1016/j.fluid.2013.08.022 https://www.doi.org/10.1016/j.fluid.2012.12.003 https://www.doi.org/10.1016/j.fluid.2015.08.009 https://www.doi.org/10.1021/acs.jced.8b00601 https://www.doi.org/10.1021/acs.jced.9b00353

https://www.doi.org/10.1016/j.jct.2016.09.011

https://www.doi.org/10.1016/j.fluid.2015.06.026

Equilibrium solubility of dinitolmide in several neat solvents and binary Solvents for some point with and

and physic Corbanica barageites for solution intro-2-methylbenzoic Acid in 13 Physic Ac PU2enSettyertethon 220215 to boord the first the former the first term of term o bis(trifluoromethy/sulfonyl)-amide:

https://www.doi.org/10.1016/j.jct.2019.01.013 https://www.doi.org/10.1016/j.jct.2019.06.019 **Solventsetice coverse lubility and Externational and left in introvision of Externational and left introvision of Externation of the solubility of Externational content of the solubility of Exter** https://www.doi.org/10.1016/j.fluid.2012.09.027 **Standard actini melaamolynes of Standard actini melaamolynes Standard actini melaamolynes of Standard actini me** https://www.doi.org/10.1016/j.jct.2003.09.005 https://www.doi.org/10.1021/acs.jced.7b00429 https://www.doi.org/10.1016/j.jct.2011.11.005 https://www.doi.org/10.1021/acs.jced.8b00635 https://www.doi.org/10.1016/j.jct.2018.11.025

Bit Hills of American Hills in Spiketion in Draw of the solution of the solution in Draw of the solution in the solution in the solution in Draw of the solution in the solutin the solutin the solution in the solutin the solution in the sol **An an analysis of the second second**

Thermodynamic Properties of Mixtures https://www.doi.org/10.1021/je020060f Containing Precursors of Vitamin B5: Studies on Thermodynamic and Containing Precursors of Vitamin B5: Studies on Thermodynamic and Transport Properties of Binary Mixtures bhareodynamic and binary Mixtures bhareodynamic and binary Mixtures applicants to many and any application for or difficult provision and any application for or difficult provision and any application for or difficult provision and any application of the provision of the standard provision of the standard provision of the provision of the standard provision of the standard provision of the provision of the standard provision of the standard provision of the provision of the standard provision of the standard provision of the provision of the standard provision of the standard provision of the provision of the standard provision of the standard provision of the standard provision of the provision of the standard provision of the standard provision of the provision of the standard provision of the standard provision of the provision of the standard provision of the standard provision of the provision of the standard provision of the standard provision of the provision of the standard prov thermodynamic modelling of

Baffer an er mixture organie solvents: containing eutes e 3 energy mand to not book baffer a consideration of the solvent for the solvent of the solvent of the solvent for the solvent of the solvent of the solvent solvent of the so organio sonaes and water in the ionic Thermodynamia Madeh Correlation and Aray ani and the sonal test in the ani the sonal of genero and test in the syl-3-mentioned most in the sonal test and configuration of most in the sonal test and configuration of most in the sonal test and configuration of the sonal test and test and the sonal test and test and the sonal test and test and

https://www.doi.org/10.1021/je060311a https://www.doi.org/10.1016/j.jct.2016.07.021 https://www.doi.org/10.1021/je700560s https://www.doi.org/10.1021/je700645p https://www.doi.org/10.1021/acs.jced.8b00717 https://www.doi.org/10.1021/je900838a https://www.doi.org/10.1016/j.jct.2016.12.028 https://www.doi.org/10.1021/acs.jced.9b00258 https://www.doi.org/10.1016/j.jct.2015.07.010 https://www.doi.org/10.1021/acs.jced.7b00695 https://www.doi.org/10.1021/acs.jced.9b00564 https://www.doi.org/10.1016/j.jct.2016.10.029 https://www.doi.org/10.1016/j.jct.2016.08.007

thermodynamic modelling of Saluhiiyar Mesanetwiezi (and Modeliagyl) JHP pj/razol-35600/10.1021/acs.jced.8b00192 pf Marvitor phaneyl Ethansinon and = reference of the same state of the same https://www.doi.org/10.1016/j.fluid.2013.10.011 https://www.doi.org/10.1021/je101146f https://www.doi.org/10.1016/j.fluid.2013.05.002 https://www.doi.org/10.1016/j.jct.2013.08.030 https://www.doi.org/10.1021/acs.jced.8b00931 https://www.doi.org/10.1016/j.jct.2013.10.038 The first of the solubility of Limonin in the first of the solubility of Limonin in the solubility the solubility o https://www.doi.org/10.1016/j.jct.2016.08.008 https://www.doi.org/10.1021/acs.jced.8b01001 https://www.doi.org/10.1021/acs.jced.9b00220 https://www.doi.org/10.1021/acs.jced.9b00385 https://www.doi.org/10.1021/acs.jced.7b00005 Determination and Thermodynamic Analysis of the Solubility of Limonin in Polypoint and Conversion of Solution of S https://www.doi.org/10.1021/acs.jced.7b00851

Thermodynamic Properties of Inorganic Salts in Nonaqueous Solubility of an and correlation of Solubility of Gatifloxacin in 12 Pure

Sowenilatvera Gantpard and Minpanol,

Sali bittu Madeling analiki xin Seven Proposti a sing fas Bentrain an Different Permano in Advise Train Different Provide the Advise Train Artibility Measurement of Cetirizine and barend ba sound in the separation processes: In situ measurement of liquid-liquid equilibria by medium field nuclear magnetic resonance:

https://www.doi.org/10.1021/je0496950 https://www.doi.org/10.1021/acs.jced.6b00721 https://www.doi.org/10.1016/j.fluid.2007.01.003 https://www.doi.org/10.1021/acs.jced.8b00902 Solubility of Gatifloxacin in 12 Pure Solubility of Gati the instrument of the instrume https://www.doi.org/10.1016/j.fluid.2016.12.012 https://www.doi.org/10.1016/j.fluid.2018.05.005 https://www.doi.org/10.1016/j.fluid.2019.03.023 https://www.doi.org/10.1016/j.fluid.2015.03.036 https://www.doi.org/10.1016/j.fluid.2018.04.004 https://www.doi.org/10.1021/acs.jced.8b00720 https://www.doi.org/10.1021/je900401z Septons: Actionitring, Methyl Acete, Benybactioned, Mixingutherpederamics Properties of p-Toluenesulfonamide Sourbeitty Madelingenenditering Seven https://www.doi.org/10.1021/acs.jced.7b00743 https://www.doi.org/10.1021/acs.jced.8b00785 https://www.doi.org/10.1021/acs.jced.9b00432 https://www.doi.org/10.1016/j.jct.2017.06.008 https://www.doi.org/10.1021/je0601098 https://www.doi.org/10.1021/acs.jced.9b00620 https://www.doi.org/10.1021/acs.jced.9b00703 https://www.doi.org/10.1007/s10765-009-0581-7

https://www.doi.org/10.1016/j.fluid.2017.01.027

Solubility of https://www.doi.org/10.1021/acs.jced.6b00349 3,7,9,11-Tetraoxo-2,4,6,8,10-pentaaza[3.3.3] Prependition properties of worthing solution properties of worthing of the solution properties of worthing of the solution properties of worthing of the solution properties of the solution of the so

Legend

af:	Acentric Factor
affp:	Proton affinity
aigt:	Autoignition Temperature
basg:	Gas basicity
chl:	Standard liquid enthalpy of combustion
cpg:	Ideal gas heat capacity
cpl:	Liquid phase heat capacity
dm:	Dipole Moment
dvisc:	Dynamic viscosity
ea:	Electron affinity
fll:	Lower Flammability Limit
flu:	Upper Flammability Limit
fpc:	Flash Point (Closed Cup Method)
gf:	Standard Gibbs free energy of formation
gyrad:	Radius of Gyration
hf:	Enthalpy of formation at standard conditions
hfl:	Liquid phase enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions
hfust:	Enthalpy of fusion at a given temperature
hvap:	Enthalpy of vaporization at standard conditions
hvapt:	Enthalpy of vaporization at a given temperature
ie:	Ionization energy
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
nfpaf:	NFPA Fire Rating
nfpah:	NFPA Health Rating
nfpas:	NFPA Safety Rating
pc:	Critical Pressure
pvap:	Vapor pressure
rfi:	Refractive Index
rhol:	Liquid Density
rinpol:	Non-polar retention indices
ripol:	Polar retention indices

sl:	Liquid phase molar entropy at standard conditions
speedsl:	Speed of sound in fluid
srf:	Surface Tension
svapt:	Entropy of vaporization at a given temperature
tb:	Normal Boiling Point Temperature
tc:	Critical Temperature
tcondl:	Liquid thermal conductivity
tf:	Normal melting (fusion) point
tt:	Triple Point Temperature
VC:	Critical Volume
ZC:	Critical Compressibility
zra:	Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/24-246-2/Acetonitrile.pdf

Generated by Cheméo on 2024-09-21 00:57:02.396142245 +0000 UTC m=+1461085.033111510. Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.