Trichloromethane

Other names: Inchi: InchiKey:	CHCl3 Chloroform Chloroforme Cloroformio F 20 Formyl trichloride Freon 20 Methane trichloride Methane, trichloro- Methenyl trichloride Methyl trichloride NCI-C02686 NSC 77361 R 20 R 20 (refrigerant) R-20 Rcra waste number U044 Trichlormethaan Trichlormethaan Trichloroform Trichloroform Triclorometano UN 1888 InChl=1S/CHCl3/c2-1(3)4/h1H
Formula:	CHCI3
SMILES:	
Mol. weight [g/mol]:	119.38
CAS:	67-66-3

Physical Properties

Property code	Value	Unit	Source
af	0.2180		KDB
chl	-474.00 ± 8.40	kJ/mol	NIST Webbook
chl	-473.21	kJ/mol	NIST Webbook
dm	1.10	debye	KDB
ea	0.62 ± 0.16	eV	NIST Webbook

ea	1.76 ± 0.05	eV	NIST Webbook
gf	-68.58	kJ/mol	KDB
gyrad	3.1780		KDB
hf	-101.30	kJ/mol	KDB
hf	-102.90 ± 2.50	kJ/mol	NIST Webbook
hfl	-134.30	kJ/mol	NIST Webbook
hfl	-134.10 ± 2.50	kJ/mol	NIST Webbook
hfus	7.41	kJ/mol	Joback Method
hvap	31.40	kJ/mol	NIST Webbook
hvap	31.32 ± 0.08	kJ/mol	NIST Webbook
hvap	30.50 ± 0.42	kJ/mol	NIST Webbook
hvap	31.10	kJ/mol	NIST Webbook
ie	11.48	eV	NIST Webbook
ie	11.42 ± 0.03	eV	NIST Webbook
ie	11.50	eV	NIST Webbook
ie	11.40	eV	NIST Webbook
ie	11.37 ± 0.02	eV	NIST Webbook
ie	11.48	eV	NIST Webbook
ie	11.30	eV	NIST Webbook
ie	11.41 ± 0.02	eV	NIST Webbook
ie	11.37 ± 0.02	eV	NIST Webbook
ie	11.50	eV	NIST Webbook
log10ws	-1.17		Aqueous Solubility Prediction Method
log10ws	-1.17		Estimated Solubility Method
logp	1.986		Crippen Method
mcvol	61.670	ml/mol	McGowan Method
nfpah	%!d(float64=2)		KDB
рс	5328.68 ± 10.13	kPa	NIST Webbook
рс	5470.00	kPa	KDB
рс	5328.68 ± 6.07	kPa	NIST Webbook
rhoc	490.64 ± 3.58	kg/m3	NIST Webbook
rhoc	495.42 ± 2.39	kg/m3	NIST Webbook
rhoc	458.41 ± 2.39	kg/m3	NIST Webbook
rinpol	607.90		NIST Webbook
rinpol	621.10		NIST Webbook
rinpol	610.00		NIST Webbook
rinpol	614.80		NIST Webbook
rinpol	625.80		NIST Webbook
rinpol	604.00		NIST Webbook
rinpol	606.00		NIST Webbook
rinpol	604.00		NIST Webbook
rinpol	606.80		NIST Webbook
rinpol	610.00		NIST Webbook
··			

		-
rinpol	604.00	NIST Webbook
rinpol	608.00	NIST Webbook
rinpol	602.00	NIST Webbook
rinpol	582.00	NIST Webbook
rinpol	609.00	NIST Webbook
rinpol	568.00	NIST Webbook
rinpol	595.20	NIST Webbook
rinpol	616.00	NIST Webbook
rinpol	628.40	NIST Webbook
rinpol	587.00	NIST Webbook
rinpol	622.00	NIST Webbook
rinpol	622.00	NIST Webbook
rinpol	613.00	NIST Webbook
rinpol	598.00	NIST Webbook
rinpol	601.00	NIST Webbook
rinpol	616.00	NIST Webbook
rinpol	615.00	NIST Webbook
rinpol	601.00	NIST Webbook
rinpol	621.70	NIST Webbook
rinpol	601.00	NIST Webbook
rinpol	590.00	NIST Webbook
rinpol	618.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	561.00	NIST Webbook
rinpol	569.00	NIST Webbook
rinpol	630.00	NIST Webbook
rinpol	605.00	NIST Webbook
rinpol	615.00	NIST Webbook
rinpol	601.00	NIST Webbook
rinpol	615.00	NIST Webbook
rinpol	618.00	NIST Webbook
rinpol	618.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	588.00	NIST Webbook
rinpol	601.00	NIST Webbook
rinpol	616.00	NIST Webbook
rinpol	609.00	NIST Webbook
rinpol	617.00	NIST Webbook
rinpol	609.00	NIST Webbook
rinpol	609.00	NIST Webbook
rinpol	611.00	NIST Webbook
rinpol	629.00	NIST Webbook
rinpol	609.00	NIST Webbook
rinpol	603.00	NIST Webbook

rinpol	620.00	NIST Webbook
rinpol	618.00	NIST Webbook
rinpol	609.00	NIST Webbook
rinpol	601.00	NIST Webbook
rinpol	601.00	NIST Webbook
rinpol	603.00	NIST Webbook
rinpol	619.00	NIST Webbook
rinpol	620.00	NIST Webbook
rinpol	609.00	NIST Webbook
rinpol	611.00	NIST Webbook
rinpol	601.00	NIST Webbook
rinpol	606.00	NIST Webbook
rinpol	603.00	NIST Webbook
rinpol	609.00	NIST Webbook
rinpol	616.00	NIST Webbook
rinpol	595.00	NIST Webbook
rinpol	605.00	NIST Webbook
rinpol	605.00	NIST Webbook
rinpol	598.00	NIST Webbook
rinpol	617.20	NIST Webbook
rinpol	605.00	NIST Webbook
rinpol	618.20	NIST Webbook
ripol	1024.00	NIST Webbook
ripol	1037.00	NIST Webbook
ripol	1034.00	NIST Webbook
ripol	1030.11	NIST Webbook
ripol	1028.95	NIST Webbook
ripol	1027.69	NIST Webbook
ripol	1026.00	NIST Webbook
ripol	1026.00	NIST Webbook
ripol	1024.00	NIST Webbook
ripol	1021.00	NIST Webbook
ripol	1020.00	NIST Webbook
ripol	1022.00	NIST Webbook
ripol	1026.00	NIST Webbook
ripol	1026.00	NIST Webbook
ripol	1013.00	NIST Webbook
ripol	1028.00	NIST Webbook
ripol	1010.00	NIST Webbook
ripol	1020.00	NIST Webbook
ripol	1021.00	NIST Webbook
ripol	1022.00	NIST Webbook
ripol	1022.00	NIST Webbook
ripol	1018.00	NIST Webbook
· .		

ripol	1020.00		NIST Webbook
ripol	1023.00		NIST Webbook
ripol	1022.00		NIST Webbook
ripol	999.00		NIST Webbook
ripol	1038.00		NIST Webbook
ripol	1010.00		NIST Webbook
ripol	1045.00		NIST Webbook
ripol	1007.00		NIST Webbook
ripol	1037.00		NIST Webbook
ripol	1037.00		NIST Webbook
ripol	1017.00		NIST Webbook
ripol	1025.00		NIST Webbook
ripol	1015.00		NIST Webbook
ripol	1016.00		NIST Webbook
ripol	1037.00		NIST Webbook
ripol	1037.00		NIST Webbook
ripol	1018.00		NIST Webbook
ripol	1020.00		NIST Webbook
ripol	992.00		NIST Webbook
ripol	1014.00		NIST Webbook
ripol	1014.00		NIST Webbook
ripol	1000.00		NIST Webbook
ripol	1000.00		NIST Webbook
ripol	1024.00		NIST Webbook
ripol	1037.00		NIST Webbook
ripol	1027.69		NIST Webbook
ripol	1010.00		NIST Webbook
ripol	1037.00		NIST Webbook
tb	334.30 ± 0.50	К	NIST Webbook
tb	334.35	K	Separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol + water): Isobaric vapour-liquid phase equilibrium measurements and azeotropic distillation
tb	334.45 ± 0.60	K	NIST Webbook
tb	334.35 ± 0.20	K	NIST Webbook
tb	334.32	K	KDB
tb	335.00	К	The role of organic diluents in the aspects of equilibrium, kinetics and thermodynamic model for silver ion extraction using an extractant D2EHPA

	tb	334.10	K	Phase diagrams of (vapour + liquid) equilibrium for binary mixtures of a,a,a-trifluorotoluene with ethanol, or benzene, or chloroform at pressure 101.4 kPa
	tb	334.40 ± 0.30	К	NIST Webbook
	tb	334.12	E	Isobaric Vapor-Liquid Phase Equilibrium Measurements for Allyl Alcohol with Chloroform, Ethyl Acetate, and Methyl Propionate at 101.3 kPa
1	tb	334.30	К	NIST Webbook
t	tb	334.37 ± 0.15	К	NIST Webbook
	tb	334.45 ± 0.50	К	NIST Webbook
t	tb	334.10 ± 0.30	К	NIST Webbook
	tb	334.35 ± 0.06	К	NIST Webbook
t	tb	334.34 ± 0.25	К	NIST Webbook
i	tb	334.39 ± 0.30	К	NIST Webbook
t	tb	334.15 ± 0.50	К	NIST Webbook
i	tb	334.35 ± 0.10	К	NIST Webbook
i	tb	334.24 ± 0.15	К	NIST Webbook
	tb	333.95 ± 0.40	К	NIST Webbook
i	tb	334.42 ± 0.35	К	NIST Webbook
	tb	334.42 ± 0.30	К	NIST Webbook
ł	tb	334.35 ± 0.30	К	NIST Webbook
	tb	334.35 ± 0.30	К	NIST Webbook
	tb	334.35 ± 0.30	К	NIST Webbook
	tb	334.30 ± 0.20	К	NIST Webbook
1	tb	334.30 ± 0.50	К	NIST Webbook
	tb	334.45 ± 0.50	К	NIST Webbook
i	tb	334.20 ± 1.00	К	NIST Webbook
	tb	334.50 ± 0.20	К	NIST Webbook
f	tb	334.22 ± 0.50	К	NIST Webbook
	tb	334.27 ± 0.30	К	NIST Webbook
i	tb	334.30 ± 0.25	К	NIST Webbook
	tb	334.30 ± 0.50	К	NIST Webbook
i	tb	334.23 ± 0.06	К	NIST Webbook
1	tb	334.30 ± 0.30	К	NIST Webbook
-	tb	334.40 ± 0.50	К	NIST Webbook
	tb	334.37 ± 0.20	К	NIST Webbook
t	tb	334.20 ± 0.30	К	NIST Webbook
	tb	334.22 ± 0.20	К	NIST Webbook
	tb	334.35 ± 0.30	К	NIST Webbook
	tb	334.30 ± 0.20	К	NIST Webbook

tc	536.40	К	KDB
tf	209.64 ± 0.10	К	NIST Webbook
tf	210.46 ± 0.20	К	NIST Webbook
tf	210.00 ± 2.00	К	NIST Webbook
tf	209.50	К	KDB
tf	212.15 ± 1.00	К	NIST Webbook
tf	209.90 ± 0.30	К	NIST Webbook
tf	211.59 ± 0.50	К	NIST Webbook
tf	210.00 ± 2.00	К	NIST Webbook
tf	209.50 ± 0.70	К	NIST Webbook
tf	209.95	К	Aqueous Solubility Prediction Method
tf	211.05 ± 0.30	К	NIST Webbook
tf	209.65 ± 0.20	К	NIST Webbook
tf	209.73 ± 0.01	К	NIST Webbook
tf	210.15 ± 1.00	К	NIST Webbook
tf	209.65 ± 0.20	К	NIST Webbook
tf	209.61 ± 0.08	К	NIST Webbook
tt	209.61 ± 0.20	К	NIST Webbook
VC	0.239	m3/kmol	KDB
volm	8.07e-05	m3/mol	Excess Gibbs energies and volumes of the ternary system chloroform + tetrahydrofuran + cyclohexane at 298.15 K
ZC	0.2931300		KDB
zra	0.28		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	75.56	J/mol×K	400.12	Joback Method
cpg	79.40	J/mol×K	466.12	Joback Method
cpg	81.13	J/mol×K	499.12	Joback Method
cpg	71.18	J/mol×K	334.13	Joback Method
cpg	82.74	J/mol×K	532.11	Joback Method
cpg	77.54	J/mol×K	433.12	Joback Method
cpg	73.44	J/mol×K	367.13	Joback Method
cpl	114.25	J/mol×K	298.15	NIST Webbook
cpl	114.35	J/mol×K	298.15	NIST Webbook
cpl	117.10	J/mol×K	298.00	NIST Webbook
cpl	113.20	J/mol×K	298.15	NIST Webbook
cpl	139.70	J/mol×K	303.60	NIST Webbook

cpl113.00J/molxK298.10NIST Webbookcpl113.73J/molxK298.15NIST Webbookcpl114.26J/molxK298.15NIST Webbookcpl116.20J/molxK293.00NIST Webbookcpl114.32J/molxK298.15NIST Webbookcpl115.50J/molxK293.20NIST Webbookcpl115.50J/molxK293.20NIST Webbookcpl116.70J/molxK293.20NIST Webbookcpl116.70J/molxK303.00NIST Webbookcpl116.70J/molxK298.00NIST Webbookcpl111.85J/molxK298.15NIST Webbookcpl113.85J/molxK298.15NIST Webbookcpl113.85J/molxK298.15NIST Webbookdvisc0.0007130Paxs273.15Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform +] Methyl tert-Buly]dvisc0.0005200Paxs303.15Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. Halaalkanes and other polar solvents. <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
cpl114.26J/molxK298.15NIST Webbookcpl116.20J/molxK293.00NIST Webbookcpl113.40J/molxK298.15NIST Webbookcpl114.32J/molxK298.15NIST Webbookcpl115.50J/molxK298.15NIST Webbookcpl115.50J/molxK293.20NIST Webbookcpl116.70J/molxK303.20NIST Webbookcpl116.70J/molxK298.00NIST Webbookcpl114.18J/molxK298.00NIST Webbookcpl114.50J/molxK298.15NIST Webbookcpl115.50J/molxK298.15NIST Webbookcpl113.85J/molxK298.15NIST Webbookcpl113.85J/molxK298.15NIST Webbookcpl113.85J/molxK298.15NIST Webbookcpl113.85J/molxK298.15NIST Webbookcpl114.18J/molxK298.15NIST Webbookcpl115.50J/molxK298.15NIST Webbookcpl113.85J/molxK298.15NIST Webbookcpl114.18J/molxK298.15NIST Webbookcpl115.50J/molxK298.15NIST Webbookcpl113.85J/molxK298.15NIST Webbookcpl113.85J/molxK298.15NIST Webbookdvisc0.0005200Paxs303.15Studies of viscosities of 	cpl	113.00	J/mol×K	298.10	NIST Webbook	
cpl 116.20 J/molxK 293.00 NIST Webbook cpl 113.40 J/molxK 300.00 NIST Webbook cpl 114.32 J/molxK 298.15 NIST Webbook cpl 115.50 J/molxK 298.15 NIST Webbook cpl 115.50 J/molxK 298.15 NIST Webbook cpl 115.50 J/molxK 298.20 NIST Webbook cpl 114.00 J/molxK 303.20 NIST Webbook cpl 116.70 J/molxK 303.00 NIST Webbook cpl 114.18 J/molxK 298.00 NIST Webbook cpl 113.85 J/molxK 298.15 NIST Webbook cpl 113.85 J/molxK 298.15 NIST Webbook dvisc 0.0007130 Paxs 273.15 Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar enthalpy of [Chloroform + Methyl ert-Butyl Enther] Motyles of viscosities of dilute solutions of alk/amine in non-electrolyte solvents dvisc 0.0004710 Paxs 313.15 Studies of viscosities of dilute solutions of alk/amine in non-electrolyte solve	cpl	113.73	J/mol×K	298.15	NIST Webbook	
cpl 113.40 J/molxK 300.00 NIST Webbook cpl 114.32 J/molxK 298.15 NIST Webbook cpl 115.50 J/molxK 298.15 NIST Webbook cpl 115.50 J/molxK 293.20 NIST Webbook cpl 116.70 J/molxK 303.20 NIST Webbook cpl 114.00 J/molxK 303.00 NIST Webbook cpl 114.18 J/molxK 298.00 NIST Webbook cpl 114.18 J/molxK 298.00 NIST Webbook cpl 114.18 J/molxK 298.15 NIST Webbook cpl 114.18 J/molxK 298.15 NIST Webbook dvisc 0.0007130 Paxs 273.15 Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar dvisc 0.0005200 Paxs 303.15 Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. dvisc 0.0004710 Paxs 313.15 Studies of viscosities of alkylamine in non-electrolyte solvents. II. dvisc 0.0004910 Paxs 313.15 Densitie	cpl	114.26	J/mol×K	298.15	NIST Webbook	
cpl114.32J/molxK298.15NIST Webbookcpl115.50J/molxK298.15NIST Webbookcpl115.50J/molxK293.20NIST Webbookcpl116.70J/molxK303.20NIST Webbookcpl116.70J/molxK298.00NIST Webbookcpl1115.50J/molxK298.00NIST Webbookcpl1115.50J/molxK298.15NIST Webbookcpl113.85J/molxK298.15NIST Webbookcpl113.85J/molxK298.15NIST Webbookdvisc0.0007130Paxs273.15Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Ether]dvisc0.0005200Paxs303.15Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. Haloalkanes and other polar solventsdvisc0.0004710Paxs313.15Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solventsdvisc0.0004910Paxs313.15Densities, viscosities of dilute solutions of alkylamine in non-electrolyte solventsdvisc0.0004910Paxs313.15Densities, viscosities, and Ultrasonic Viscosities, and Ultrasonic <br< td=""><td>cpl</td><td>116.20</td><td>J/mol×K</td><td>293.00</td><td>NIST Webbook</td><td></td></br<>	cpl	116.20	J/mol×K	293.00	NIST Webbook	
cpl115.50J/molxK298.15NIST Webbookcpl115.50J/molxK293.20NIST Webbookcpl114.00J/molxK303.20NIST Webbookcpl116.70J/molxK298.00NIST Webbookcpl114.18J/molxK298.00NIST Webbookcpl1115.50J/molxK298.15NIST Webbookcpl113.85J/molxK298.15NIST Webbookcpl113.85J/molxK298.15NIST Webbookdvisc0.0007130Paxs273.15Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Eher]dvisc0.0005200Paxs303.15Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. Haloalkanes and other polar solventsdvisc0.0004710Paxs313.15Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solventsdvisc0.0004910Paxs313.15Densities, and Ultrasonic Viscosities, and Ultrasonic <td>cpl</td> <td>113.40</td> <td>J/mol×K</td> <td>300.00</td> <td>NIST Webbook</td> <td></td>	cpl	113.40	J/mol×K	300.00	NIST Webbook	
cpl115.50J/molxK293.20NIST Webbookcpl114.00J/molxK303.20NIST Webbookcpl116.70J/molxK303.00NIST Webbookcpl114.18J/molxK298.00NIST Webbookcpl115.50J/molxK298.15NIST Webbookcpl113.85J/molxK298.15NIST Webbookdvisc0.0007130Paxs273.15Density, Viscosity, Viscosity, Viscosity, 	cpl	114.32	J/mol×K	298.15	NIST Webbook	
cpl114.00J/molxK303.20NIST Webbookcpl116.70J/molxK303.00NIST Webbookcpl114.18J/molxK298.00NIST Webbookcpl115.50J/molxK298.15NIST Webbookcpl113.85J/molxK298.15NIST Webbookdvisc0.0007130Paxs273.15Density, Viscosity, Viscosity, Viscosity, Uscosity, Uscosity, Enthalpy of IChioroform + Methyl tert-Butyl Ether]dvisc0.0005200Paxs303.15Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II, Haloalkanes and other polar solvents. II, Haloalkanes and other polar solvents. II, Haloalkanes and other polar solvents. II, Halaolakanes and other polar solvents. II, Haloalkanes and other polar solvents	cpl	115.50	J/mol×K	298.15	NIST Webbook	
cpl116.70J/molxK303.00NIST Webbookcpl114.18J/molxK298.00NIST Webbookcpl115.50J/molxK298.15NIST Webbookcpl113.85J/molxK298.15NIST Webbookdvisc0.0007130Paxs273.15Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl Ether]dvisc0.0005200Paxs303.15Studies of viscosities of olitute solutions of alkylamine in non-electrolyte solvents. II, Haloalkanes and other polar solventsdvisc0.0004710Paxs313.15Studies of viscosities, and ultrasonic viscosities, and Ultrasonic Viscosities, and Ultrasonic of Binary Mixtures of Kitutes of Kitutes of Kitutes of viscosities, and Ultrasonic Viscosities, and Ult	cpl	115.50	J/mol×K	293.20	NIST Webbook	
cpl114.18J/mol×K298.00NIST Webbookcpl115.50J/mol×K298.15NIST Webbookcpl113.85J/mol×K298.15NIST Webbookdvisc0.0007130Paxs273.15Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl Ether]dvisc0.0005200Paxs303.15Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II, Haloalkanes and other polar solvents. II. Haloalkanes and other polar solvents.	cpl	114.00	J/mol×K	303.20	NIST Webbook	
cpl115.50J/molxK298.15NIST Webbookcpl113.85J/molxK298.15NIST Webbookdvisc0.0007130Paxs273.15Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl Ether]dvisc0.0005200Paxs303.15Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. Haloalkanes and other polar solventsdvisc0.0004710Paxs313.15Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. Haloalkanes and other polar solventsdvisc0.0004910Paxs313.15Densities, viscosities, and Ultrasonic Viscosities of dilute solutions of alkylamine in non-electrolyte solventsdvisc0.0004910Paxs313.15Densities, viscosities, and Ultrasonic Velicotity Studies of Binary Mixtures of Chloroform with	cpl	116.70	J/mol×K	303.00	NIST Webbook	
cpl113.85J/molxK298.15NIST Webbookdvisc0.0007130Paxs273.15Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl Ether]dvisc0.0005200Paxs303.15Studies of viscosities of alkylamine in non-electrolyte solventsdvisc0.0004710Paxs313.15Studies of viscosities of alkylamine in non-electrolyte solventsdvisc0.0004710Paxs313.15Studies of viscosities of alkylamine in non-electrolyte solventsdvisc0.0004710Paxs313.15Studies of viscosities of alkylamine in non-electrolyte solventsdvisc0.0004710Paxs313.15Studies of viscosities of alkylamine in non-electrolyte solventsdvisc0.0004910Paxs313.15Densities, Viscosities, and Ultrasonic Velocity Studies of Binary Mixtures of Chloroform with	cpl	114.18	J/mol×K	298.00	NIST Webbook	
dvisc0.0007130Paxs273.15Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl Ether]dvisc0.0005200Paxs303.15Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solventsdvisc0.0004710Paxs313.15Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solventsdvisc0.0004910Paxs313.15Densities, viscosities, and Ultrasonic Velocity Studies of Binary Mixtures of Chloroform with	cpl	115.50	J/mol×K	298.15	NIST Webbook	
dvisc 0.0005200 Paxs 303.15 Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. Haloalkanes and other polar sol	cpl	113.85	J/mol×K	298.15	NIST Webbook	
viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. Haloalkanes and other polar solvents dvisc 0.0004710 Paxs 313.15 Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. dvisc 0.0004710 Paxs 313.15 Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. dvisc 0.0004910 Paxs 313.15 Densities, Viscosities, and Ultrasonic	dvisc	0.0007130	Paxs	273.15	Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl	
viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. Haloalkanes and other polar solventsdvisc0.0004910Pa×s313.15Densities, Viscosities, and Ultrasonic Velocity Studies of Binary Mixtures of Chloroform with	dvisc	0.0005200	Pa×s	303.15	viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. Haloalkanes and other polar	
Viscosities, and Ultrasonic Velocity Studies of Binary Mixtures of Chloroform with	dvisc	0.0004710	Paxs	313.15	viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. Haloalkanes and other polar	
Butan-1-ol at (303.15 and 313.15) K	dvisc	0.0004910	Paxs	313.15	Viscosities, and Ultrasonic Velocity Studies of Binary Mixtures of Chloroform with Propan-1-ol and Butan-1-ol at (303.15 and	

dvisc	0.0005340	Paxs	303.15	Densities, Viscosities, and Ultrasonic Velocity Studies of Binary Mixtures of Chloroform with Octan-1-ol and Decan-1-ol at (303.15 and 313.15) K	
dvisc	0.0004910	Paxs	313.15	Densities, Viscosities, and Ultrasonic Velocity Studies of Binary Mixtures of Chloroform with Octan-1-ol and Decan-1-ol at (303.15 and 313.15) K	
dvisc	0.0005130	Paxs	308.15	Densities, viscosities, and ultrasonic velocity studies of binary mixtures of trichloromethane with methanol, ethanol, propan-1-ol, and butan-1-ol at T=(298.15 and 308.15) K	
dvisc	0.0006000	Paxs	293.15	Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl Ether]	
dvisc	0.0005760	Paxs	298.15	Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl Ether]	
dvisc	0.0005520	Paxs	303.15	Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl Ether]	

dvisc	0.0005090	Pa×s	313.15	Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl Ether]	
dvisc	0.0004910	Paxs	318.15	Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl Ether]	
dvisc	0.0005560	Pa×s	298.15	Densities, viscosities, and ultrasonic velocity studies of binary mixtures of trichloromethane with methanol, ethanol, propan-1-ol, and butan-1-ol at T=(298.15 and 308.15) K	
dvisc	0.0005340	Paxs	303.15	Densities, Viscosities, and Ultrasonic Velocity Studies of Binary Mixtures of Chloroform with Propan-1-ol and Butan-1-ol at (303.15 and 313.15) K	
dvisc	0.0006510	Paxs	283.15	Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl Ether]	
hfust	8.80	kJ/mol	209.60	NIST Webbook	
hfust	8.80	kJ/mol	209.60	NIST Webbook	
hvapt	30.40	kJ/mol	374.50	NIST Webbook	
hvapt	28.90	kJ/mol	445.50	NIST Webbook	
hvapt	30.10	kJ/mol	501.00	NIST Webbook	
hvapt	30.90	kJ/mol	320.50	NIST Webbook	
hvapt	29.71	kJ/mol	334.30	KDB	
hvapt	32.50	kJ/mol	296.50	NIST Webbook	
hvapt	35.00	kJ/mol	274.50	NIST Webbook	

hvapt	29.24	kJ/mol	334.30	NIST Webbook	
hvapt	30.80	kJ/mol	366.50	NIST Webbook	
hvapt	31.80	kJ/mol	248.00	NIST Webbook	
kvisc	0.000003	m2/s	313.15	Densities, Viscosities, and Ultrasonic Velocity Studies of Binary Mixtures of Chloroform with Pentan-1-ol, Hexan-1-ol, and Heptan-1-ol at (303.15 and 313.15) K	
kvisc	0.000004	m2/s	303.15	Densities, Viscosities, and Ultrasonic Velocity Studies of Binary Mixtures of Chloroform with Pentan-1-ol, Hexan-1-ol, and Heptan-1-ol at (303.15 and 313.15) K	
рvар	61.85	kPa	320.00 1-E Tri	Isobaric Vapor-Liquid and Liquid-Liquid Equilibria for Chloroform + Ethanol + thyl-3-methylimidazoliu fluoromethanesulfonat at 100 kPa	um ie
рvар	32.19	kPa	303.15	Density, viscosity, isothermal (vapour + liquid) equilibrium, excess molar volume, viscosity deviation, and their correlations for chloroform + methyl isobutyl ketone binary system	
рvар	101.30	kPa	334.35 (2,2,	Separation of azeotrope 3,3-tetrafluoro-1-propa + water): Isobaric vapour-liquid phase equilibrium measurements and azeotropic distillation	anol

рvар	32.41	kPa	303.15 Total Vapor Pressure Measurements for 2-Ethoxyethanol with Carbon Tetrachloride, Chloroform, and Dichloromethane at 303.15 K
рvар	32.19	kPa	303.15 Density, Viscosity, Vapor-Liquid Equilibrium, Excess Molar Volume, Viscosity Deviation, and Their Correlations for the Chloroform + 2-Butanone Binary System
рvар	34.81	kPa	305.00 Isobaric Vapor-Liquid and Liquid-Liquid Equilibria for Chloroform + Ethanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
рvар	42.47	kPa	310.00 Isobaric Vapor-Liquid and Liquid-Liquid Equilibria for Chloroform + Ethanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
рvар	51.43	kPa	315.00 Isobaric Vapor-Liquid and Liquid-Liquid Equilibria for Chloroform + Ethanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
рvар	129.28	kPa	342.00 Isobaric Vapor-Liquid and Liquid-Liquid Equilibria for Chloroform + Ethanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa

pvap	103.50	kPa	335.00 1	Isobaric Vapor-Liquid and Liquid-Liquid Equilibria for Chloroform + Ethanol + I-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
рvар	87.71	kPa	330.00	Isobaric Vapor-Liquid and Liquid-Liquid Equilibria for Chloroform + Ethanol + I-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
рvар	73.88	kPa	325.00	Isobaric Vapor-Liquid and Liquid-Liquid Equilibria for Chloroform + Ethanol + I-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
рvар	121.45	kPa	340.00 1	Isobaric Vapor-Liquid and Liquid-Liquid Equilibria for Chloroform + Ethanol + I-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
рvар	101.30	kPa	334.12	Isobaric Vapor-Liquid Phase Equilibrium Measurements for Allyl Alcohol with Chloroform, Ethyl Acetate, and Methyl Propionate at 101.3 kPa
rfi	1.44100		303.15	Densities, speeds of sound, isentropic compressibilities, refractive indexes, and viscosities of tetrahydrofuran with haloalkane or alkyl ethanoate at T = 303.15 K
rfi	1.44760		293.15	Solubilities of Phosphorus-Containing Compounds in Selected Solvents

rfi	1.45000	283.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.44390	293.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.44280	298.15 Vapour pressure and excess Gibbs energy of binary 1,2-dichloroethane + cyclohexanone, chloroform + cyclopentanone and chloroform + cyclohexanone mixtures at temperatures from 298.15 to 318.15 K
rfi	1.44200	298.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.44300	298.15 Liquid-Liquid Equilibrium, Solid-Liquid Equilibrium, Densities, and Refractivity of a Water, Chloroform, and Acetylacetone Mixture
rfi	1.44290	298.15 Study of Vapor-Liquid Equilibrium for Binary Mixtures (Chloroform + 2,2,2-Trifluoroethanol) and (r,r,r-Trifluorotoluene + 2,2,2-Trifluoroethanol) at Pressure 102 kPa

rfi	1.44710		288.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rhol	1479.21	kg/m3	298.15 Volumetric behaviour of binary mixtures of (trichloromethane + amines) at temperatures between T = (288.15 and 303.15) K at p = 0.1 MPa
rhol	1450.41	kg/m3	313.15 Temperature Dependence of Densities and Excess Molar Volumes of the Ternary Mixture (1-Butanol + Chloroform + Benzene) and its Binary Constituents (1-Butanol + Chloroform and 1-Butanol + Benzene)
rhol	1483.02	kg/m3	293.20 Isobaric vapour liquid equilibria for binary mixtures of 1,2-dibromoethane with 1,2-dichloroethane, trichloromethane, and 1,1,2,2-tetrachloroethane at atmospheric pressure
rhol	1498.08	kg/m3	288.15 Volumetric properties of the ternary system ethanol + chloroform + benzene at temperature range (288.15 313.15) K: Experimental data, correlation and prediction by cubic EOS

rhol	1488.64	kg/m3	293.15	Volumetric properties of the ternary system ethanol + chloroform + benzene at temperature range (288.15 313.15) K: Experimental data, correlation and prediction by cubic EOS	
rhol	1479.15	kg/m3	298.15	Volumetric properties of the ternary system ethanol + chloroform + benzene at temperature range (288.15 313.15) K: Experimental data, correlation and prediction by cubic EOS	
rhol	1469.61	kg/m3	303.15	Volumetric properties of the ternary system ethanol + chloroform + benzene at temperature range (288.15 313.15) K: Experimental data, correlation and prediction by cubic EOS	
rhol	1460.03	kg/m3	308.15	Volumetric properties of the ternary system ethanol + chloroform + benzene at temperature range (288.15 313.15) K: Experimental data, correlation and prediction by cubic EOS	
rhol	1450.41	kg/m3	313.15	Volumetric properties of the ternary system ethanol + chloroform + benzene at temperature range (288.15 313.15) K: Experimental data, correlation and prediction by cubic EOS	

rhol	1480.34	kg/m3	298.20	The choice of solvent and liquid liquid equilibrium for ternary water + 2-methylaziridine + chloroform system: Experimental data and modeling	
rhol	1478.75	kg/m3	298.15	Densities, viscosities, and refractive indices of binary and ternary mixtures of methanol, acetone, and chloroform at temperatures from (298.15-318.15) K and ambient pressure	
rhol	1469.16	kg/m3	303.15	Densities, viscosities, and refractive indices of binary and ternary mixtures of methanol, acetone, and chloroform at temperatures from (298.15-318.15) K and ambient pressure	
rhol	1460.01	kg/m3	308.15	Densities, viscosities, and refractive indices of binary and ternary mixtures of methanol, acetone, and chloroform at temperatures from (298.15-318.15) K and ambient pressure	
rhol	1450.39	kg/m3	313.15	Densities, viscosities, and refractive indices of binary and ternary mixtures of methanol, acetone, and chloroform at temperatures from (298.15-318.15) K and ambient pressure	

rhol	1440.03	kg/m3	318.15	Densities, viscosities, and refractive indices of binary and ternary mixtures of methanol, acetone, and chloroform at temperatures from (298.15-318.15) K and ambient pressure	
rhol	1498.14	kg/m3	288.15	Volumetric behaviour of binary mixtures of (trichloromethane + amines) at temperatures between T = (288.15 and 303.15) K at p = 0.1 MPa	
rhol	1488.70	kg/m3	293.15	Volumetric behaviour of binary mixtures of (trichloromethane + amines) at temperatures between T = (288.15 and 303.15) K at p = 0.1 MPa	
rhol	1460.03	kg/m3	308.15	Temperature Dependence of Densities and Excess Molar Volumes of the Ternary Mixture (1-Butanol + Chloroform + Benzene) and its Binary Constituents (1-Butanol + Chloroform and 1-Butanol + Benzene)	
rhol	1469.63	kg/m3	303.15	Volumetric behaviour of binary mixtures of (trichloromethane + amines) at temperatures between T = (288.15 and 303.15) K at p = 0.1 MPa	

			000.00	The survey of the sector of the
rhol	1475.30	kg/m3	303.00	Thermo-physical properties of 1,3,4-oxadiazole derivatives in pure solvents
rhol	1470.80	kg/m3	308.00	Thermo-physical properties of 1,3,4-oxadiazole derivatives in pure solvents
rhol	1465.80	kg/m3	313.00	Thermo-physical properties of 1,3,4-oxadiazole derivatives in pure solvents
rhol	1475.30	kg/m3	303.00	Thermo-acoustical studies of 1,3,4-oxadiazole as binary mixture at three different temperatures
rhol	1470.80	kg/m3	308.00	Thermo-acoustical studies of 1,3,4-oxadiazole as binary mixture at three different temperatures
rhol	1465.80	kg/m3	313.00	Thermo-acoustical studies of 1,3,4-oxadiazole as binary mixture at three different temperatures
rhol	1488.70	kg/m3	293.15	Excess volumes, Viscosities, and Excess Gibbs Energy of Activation for Viscous Flow, for binary and ternary mixtures 1- propanol + N-N dimethylformamid + chloroform at different temperatures

rhol	1469.69	kg/m3	303.15	Excess volumes, Viscosities, and Excess Gibbs Energy of Activation for Viscous Flow, for binary and ternary mixtures 1- propanol + N-N dimethylformamid + chloroform at different temperatures	
rhol	1450.39	kg/m3	313.15	Excess volumes, Viscosities, and Excess Gibbs Energy of Activation for Viscous Flow, for binary and ternary mixtures 1- propanol + N-N dimethylformamid + chloroform at different temperatures	
rhol	1429.89	kg/m3	323.15	Excess volumes, Viscosities, and Excess Gibbs Energy of Activation for Viscous Flow, for binary and ternary mixtures 1- propanol + N-N dimethylformamid + chloroform at different temperatures	
rhol	1470.50	kg/m3	303.15	Viscosity and Density for Binary Mixtures of Carbon Tetrachloride + Chloroform, Carbon Tetrachloride + Dichloromethane, and Chloroform + Dichloromethane and One Ternary Mixture of Chloroform + 1:1 (Carbon Tetrachloride + Dichloromethane) at 303.15 K	

rhol	1498.08	kg/m3	288.15	Volumetric Properties of the Binary Methanol + Chloroform and Ternary Methanol + Chloroform + Benzene Mixtures at (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K	
rhol	1488.64	kg/m3	293.15	Volumetric Properties of the Binary Methanol + Chloroform and Ternary Methanol + Chloroform + Benzene Mixtures at (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K	
rhol	1479.15	kg/m3	298.15	Volumetric Properties of the Binary Methanol + Chloroform and Ternary Methanol + Chloroform + Benzene Mixtures at (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K	
rhol	1469.61	kg/m3	303.15	Volumetric Properties of the Binary Methanol + Chloroform and Ternary Methanol + Chloroform + Benzene Mixtures at (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K	
rhol	1460.03	kg/m3	308.15	Volumetric Properties of the Binary Methanol + Chloroform and Ternary Methanol + Chloroform + Benzene Mixtures at (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K	

rhol	1450.41	kg/m3	313.15	Volumetric Properties of the Binary Methanol + Chloroform and Ternary Methanol + Chloroform + Benzene Mixtures at (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K	
rhol	1473.42	kg/m3	298.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1454.33	kg/m3	308.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1434.98	kg/m3	318.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1487.63	kg/m3	293.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	1478.16	kg/m3	298.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	

rhol	1468.61	kg/m3	303.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	1469.61	kg/m3	303.15	Temperature Dependence of Densities and Excess Molar Volumes of the Ternary Mixture (1-Butanol + Chloroform + Benzene) and its Binary Constituents (1-Butanol + Chloroform and 1-Butanol + Benzene)	
rhol	1498.08	kg/m3	288.15	Densities and Excess Molar Volumes of the Ternary Mixture 2-Butanol + Chloroform + Benzene and Binary Mixtures 2-Butanol + Chloroform, or + Benzene over the Temperature Range (288.15 to 313.15) K	
rhol	1488.64	kg/m3	293.15	Densities and Excess Molar Volumes of the Ternary Mixture 2-Butanol + Chloroform + Benzene and Binary Mixtures 2-Butanol + Chloroform, or + Benzene over the Temperature Range (288.15 to 313.15) K	

rhol	1479.15	kg/m3	298.15	Densities and Excess Molar Volumes of the Ternary Mixture 2-Butanol + Chloroform + Benzene and Binary Mixtures 2-Butanol + Chloroform, or + Benzene over the Temperature Range (288.15 to 313.15) K	
rhol	1469.61	kg/m3	303.15	Densities and Excess Molar Volumes of the Ternary Mixture 2-Butanol + Chloroform + Benzene and Binary Mixtures 2-Butanol + Chloroform, or + Benzene over the Temperature Range (288.15 to 313.15) K	
rhol	1460.03	kg/m3	308.15	Densities and Excess Molar Volumes of the Ternary Mixture 2-Butanol + Chloroform + Benzene and Binary Mixtures 2-Butanol + Chloroform, or + Benzene over the Temperature Range (288.15 to 313.15) K	
rhol	1479.15	kg/m3	298.15	Temperature Dependence of Densities and Excess Molar Volumes of the Ternary Mixture (1-Butanol + Chloroform + Benzene) and its Binary Constituents (1-Butanol + Chloroform and 1-Butanol + Benzene)	

rhol	1491.86	kg/m3	288.15	Densities and Excess Molar Volumes of the Binary Mixtures of Cyclohexanone with Chloroalkanes at Temperatures between (288.15 and 318.15) K	
rhol	1473.16	kg/m3	298.15	Densities and Excess Molar Volumes of the Binary Mixtures of Cyclohexanone with Chloroalkanes at Temperatures between (288.15 and 318.15) K	
rhol	1454.07	kg/m3	308.15	Densities and Excess Molar Volumes of the Binary Mixtures of Cyclohexanone with Chloroalkanes at Temperatures between (288.15 and 318.15) K	
rhol	1434.72	kg/m3	318.15	Densities and Excess Molar Volumes of the Binary Mixtures of Cyclohexanone with Chloroalkanes at Temperatures between (288.15 and 318.15) K	
rhol	1492.31	kg/m3	288.15	Densities and Excess Molar Volumes of the Binary Mixtures of Cyclopentanone with Chloroalkanes at T = (288.15, 298.15, 308.15, and 318.15) K	

rhol	1473.43	kg/m3	298.15	Densities and Excess Molar Volumes of the Binary Mixtures of Cyclopentanone with Chloroalkanes at T = (288.15, 298.15, 308.15, and 318.15) K	
rhol	1454.33	kg/m3	308.15	Densities and Excess Molar Volumes of the Binary Mixtures of Cyclopentanone with Chloroalkanes at T = (288.15, 298.15, 308.15, and 318.15) K	
rhol	1434.97	kg/m3	318.15	Densities and Excess Molar Volumes of the Binary Mixtures of Cyclopentanone with Chloroalkanes at T = (288.15, 298.15, 308.15, and 318.15) K	
rhol	1488.64	kg/m3	293.15	Temperature Dependence of Densities and Excess Molar Volumes of the Ternary Mixture (1-Butanol + Chloroform + Benzene) and its Binary Constituents (1-Butanol + Chloroform and 1-Butanol + Benzene)	
rhol	1498.08	kg/m3	288.15	Temperature Dependence of Densities and Excess Molar Volumes of the Ternary Mixture (1-Butanol + Chloroform + Benzene) and its Binary Constituents (1-Butanol + Chloroform and 1-Butanol + Benzene)	

rhol	1459.00	kg/m3	308.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	1489.00	kg/m3	293.00	KDB	
rhol	1450.41	kg/m3	313.15	Densities and Excess Molar Volumes of the Ternary Mixture 2-Butanol + Chloroform + Benzene and Binary Mixtures 2-Butanol + Chloroform, or + Benzene over the Temperature Range (288.15 to 313.15) K	
speedsl	950.45	m/s	308.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	984.42	m/s	298.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	916.63	m/s	318.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	

srf	0.03	N/m	293.15 1-Vinyl-	Investigation of Surface Properties and Solubility of -3-alkyl/Esterimidazolium Halide Ionic Liquids by Density Functional Methods	
srf	0.03	N/m	298.20	KDB	

Pressure Dependent Properties

Property cod	e Value	Unit	Pressure [kPa]	Source
tbp	334.25	К	96.60	Low cost apparatus for rapid boiling point determination of small air sensitive samples under inert atmosphere

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.43630e+01
Coeff. B	-2.83926e+03
Coeff. C	-4.29370e+01
Temperature range (K), min.	244.65
Temperature range (K), max.	536.40

Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C^{*}ln(T) + D^{*}T^{2}$
Coeff. A	8.11439e+01
Coeff. B	-6.35114e+03
Coeff. C	-1.00709e+01
Coeff. D	9.12761e-06

Temperature range (K), min.	209.63
Temperature range (K), max.	536.40

Datasets

Viscosity, Pa*s

101.30 Pressure, kPa 101.30 www.doi.org/10.1016/j.fluid.2 www.doi.org/10.1021/je1007 www.doi.org/10.1021/je2002	747y 012.06.005
101.30 rww.doi.org/10.1016/j.fluid.2 rww.doi.org/10.1021/je1007 rww.doi.org/10.1016/j.jct.20	Viscosity, Pa*s <u>0.0005033</u> https://www.doi.org/10.1021/je034204h
101.30 rww.doi.org/10.1016/j.fluid.2 rww.doi.org/10.1021/je1007 rww.doi.org/10.1016/j.jct.20	0.0005033 https://www.doi.org/10.1021/je034204h 2006.11.005 747y 012.06.005
/ww.doi.org/10.1016/j.fluid.2 /ww.doi.org/10.1021/je1007 /ww.doi.org/10.1016/j.jct.20	https://www.doi.org/10.1021/je034204h 2006.11.005 747y 012.06.005
/ww.doi.org/10.1021/je1007 /ww.doi.org/10.1016/j.jct.20	2006.11.005 747y 012.06.005
/ww.doi.org/10.1021/je1007 /ww.doi.org/10.1016/j.jct.20	747y 012.06.005
/ww.doi.org/10.1021/je1007 /ww.doi.org/10.1016/j.jct.20	747y 012.06.005
• • • •	
ww.doi.org/10.1021/je8002	
	218g
/ww.doi.org/10.1021/je4009 nabicyclo[2.2.2]octane vw.ddbst.com/en/EED/VLE	9816 /VLE%20Acetonitrile%3BChloroform.php
/ww.doi.org/10.1016/j.jct.20	015.02.023
ww.doi.org/10.1016/j.fluid.2	2014.04.006
ww.doi.org/10.1021/je4004	412z
ww.doi.org/10.1021/je7002	254t
/ww.doi.org/10.1021/je1005	5517
ww.doi.org/10.1016/j.fluid.2	2018.10.024
	k/9780128029992/the-yaws-handbook-of-vapor-pres
/ww.doi.org/10.1021/je4003 tramethyl	3114
ww.doi.org/10.1021/je0200	067x
/ww.doi.org/10.1016/j.tca.20	004.08.013
	ww.doi.org/10.1016/j.fluid.: ww.doi.org/10.1021/je4004 ww.doi.org/10.1021/je7002 ww.doi.org/10.1021/je1005 ww.doi.org/10.1016/j.fluid.: ww.sciencedirect.com/boo ww.doi.org/10.1021/je4003 tramethyl ww.doi.org/10.1021/je0200

Activity Coefficients at Infinite Dilution of Organic Compounds in Four New Methanol + Chloroform and Ternary Solvents: Measurement and Modeling Wall Hon Ser Solientin v Porganicer: Compounds in New Imidazolium and Compounds in New Inidazofium and Selfublika Mananum Basaddonic https://www.doi.or Inamadunanyia Meseigra of Benzoic Aniwim apti support at the ionic liquid Selful using the support at th **Hitps://www.doi.org/10.1016/j.jct.2013.05 https://www.doi.org/10.1021/acs.jced.8b https://www.doi.org/10.1021/acs.jced.8b https://www.doi.org/10.1021/acs.jced.8b https://www.doi.org/10.1021/acs.jced.8b https://www.doi.org/10.1021/acs.jced.8b https://www.doi.org/10.1021/acs.jced.8b https://www.doi.org/10.1021/acs.jced.8b https://www.doi.org/10.1021/acs.jced.8b https://www.doi.org/10.1021/acs.jced.9b https://www.doi.org/10.1021/je1009812 https://www.doi.org/10.1021/je1009812 https://www.doi.org/10.1021/je1009812 https://www.doi.org/10.1016/j.jtt.2007.07 https://www.doi.org/10.1016/j.jtt.2007.07 https://www.doi.org/10.1021/acs.jced.7b https://www.doi.org/10.1021/je201129** 2799990 And Trication in clored a second sec methanol mixed solvents at T = (278.2, Southing and the source source at 1 = (278.2, Southing several source at 1 = (278.2, Southing source at 1 = (278.2, Southing source at 1 = (278.2, Source at 1 = (278.2, Southing source at 1 = (278.2, Source at 1 = 365.55 K. Solubilities of Betulin in Fourteen

Organic Solvents at Different Therperduragences and activity The provide a structury coefficients at infinite dilution for presidence of the product of the p

Experimental data and modeling: Thermodynamic Properties of Mixtures Containing lonic Liquids: Activity Coermolekteening: Saluenity of the state of the stat (28699gandigsid 18) nematography:

https://www.doi.org/10.1021/je200195q of Organic Compounds in Four New Peterazination Base Activity Cigofitations at Infinite Dilution of Organic Solutes in The romely namics of Fluconazole Solula i type and the state of Melulailisies Of Organia Seberenductors https://www.doi.org/10.1021/acs.jced.8b00536 and Nesser (2001) Anzaming parameters biggs in the second https://www.doi.org/10.1021/je9003178 https://www.doi.org/10.1021/acs.jced.8b00025 https://www.doi.org/10.1016/j.fluid.2010.10.008 https://www.doi.org/10.1021/je4010917 https://www.doi.org/10.1016/j.jct.2019.03.033 https://www.doi.org/10.1016/j.jct.2013.05.035 https://www.doi.org/10.1021/acs.jced.8b01205 https://www.doi.org/10.1021/acs.jced.9b00658 https://www.doi.org/10.1016/j.fluid.2018.11.011 https://www.doi.org/10.1016/j.jct.2007.01.004 https://www.doi.org/10.1021/acs.jced.7b00585 https://www.doi.org/10.1016/j.fluid.2008.02.013 https://www.doi.org/10.1021/je4000982 http://onschallenge.wikispaces.com/file/view/AqueousDataset002.xlsx/351826032/AqueousDa https://www.doi.org/10.1021/je700069g https://www.doi.org/10.1016/j.jct.2016.07.021 https://www.doi.org/10.1016/j.jct.2006.03.010 https://www.doi.org/10.1016/j.jct.2017.07.012 https://www.doi.org/10.1021/acs.jced.7b00206 NN-Piperazinebis(neopentylglycol)phosphoramidate The observe from transformer and the second https://www.doi.org/10.1021/acs.jced.9b00064 https://www.doi.org/10.1021/acs.jced.7b00244 https://www.doi.org/10.1021/je050544m https://www.doi.org/10.1016/j.fluid.2012.05.006

Abraham model correlations for describing the thermodynamic

Low cost apparatus for rapid boiling point determination of small air seasmodysampies and activity anaffigients at infinite dilution for equality of Bounds Field on the field organic Selvents for and activity sourd for an infinite dilution for equality of Bounds Field on the field organic Selvents for and activity sourd for a small air selvent for a small air selv

Orgenia Solvents: Solubility of naproxen in several

organic solvents at different

Phosphoramidic acid, NtNcy, 2f Etharechyrol Growdanisc Liquids Start Fourier Se Gas Chromatography: 3-Methoxy-N-phenylaniline and Schart Phosphoramid and the second s Bernericykapoyun jonuine and Bernericykapoyun jonuiny annine and Dirparticiosures of 285 dibuomostane Wanstizeti specto and active indexes, and yzero attaneo ternahy drofuran with another an alled than acts at T an noslywerio palls durthanoate at T = 303.15 K:

https://www.doi.org/10.1016/j.jct.2018.05.003

Abraham model correlations for describing the thermodynamic Weight and first spring of solid solid with see finite print in the solid sol Measurement solate intersecting penal https://www.doi.org/10.1016/j.jct.2013.10.026 https://www.doi.org/10.1016/j.jct.2018.08.028 https://www.doi.org/10.1021/acs.jced.8b01187 https://www.doi.org/10.1021/je4005992 https://www.doi.org/10.1021/je700103k https://www.doi.org/10.1021/je100675r https://www.doi.org/10.1021/je050169y https://www.doi.org/10.1016/j.fluid.2018.01.026 https://www.doi.org/10.1021/je7007457 https://www.doi.org/10.1016/j.fluid.2007.03.029 https://www.doi.org/10.1021/je5010565

https://www.doi.org/10.1016/j.fluid.2005.10.020

https://www.doi.org/10.1016/j.tca.2004.08.001

Densities, Viscosities, and Ultrasonic Velocity Studies of Binary Mixtures of

enz;4;0;6;10;12+16;211(0;24,6,8,10,12 in Five Organic Solvents at Tenderative Solvents at tenderative Solvent Martinet (2) 21 Fin 2) 20 Solvent Michael 10 For the Martinet Solvent Michael 10 For the Solvent Solvent Michael 10 Moders for the Separation of Antiwe Coefficients at Infinite Dilutio

An A Barrishing of the information of the second of the se (2,4,6-tribromophenoxy)-2-oxide in

selected solvents:

https://www.doi.org/10.1021/je060192z

Salubility Measurement and Agerrelation https://www.doi.org/10.1021/acs.jced.6b00664

Torcan-1-ol at (303,15 and 313,15) K: 292,403,310,472,405,anitro-2,4,6,8,10,12-hexaazaisoonuirtzitanem/article/10.1007/BF02311772 https://www.doi.org/10.1021/je034153o https://www.doi.org/10.1021/je800801x https://www.doi.org/10.1021/acs.jced.7b00160 **Note:** Store the Separation of **Aniority Coefficient and Waiteite Dilution A Eleven in Separation of A miority Coefficient and Waiteite Dilution A Eleven in Separation of Se** https://www.doi.org/10.1016/j.jct.2012.08.022 https://www.doi.org/10.1016/j.jct.2014.04.020 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1518 https://www.doi.org/10.1016/j.jct.2012.11.021 cirganic solvents from T = (283.2 to
strong incental measurements and
correlations of vapor liquid equilibrium
bate monthiopinand eggstelation of
splebility infermation and eggstelation of
the eggstelation of the eggstelation of
splebility infermation and eggstelation of
splebility infermation and eggstelation of
splebility infermation and eggstelation and eggstelation and eggstelation of
the eggstelation and eggstelation of the
splebility infermation and eggstelation of the
splebility of genistin in eleven organic
solubility of genistin in eleven organichttps://www.doi.org/10.1021/je000410005
https://www.doi.org/10.1021/je100341q
https://www.doi.org/10.1021/je100341q
https://www.doi.org/10.1021/je100341q
https://www.doi.org/10.1021/je800754w https://www.doi.org/10.1016/j.fluid.2009.01.006 https://www.doi.org/10.1021/acs.jced.5b00395 https://www.doi.org/10.1021/acs.jced.7b00846 https://www.doi.org/10.1021/acs.jced.5b00994 Measurement and correlation of the solubility of genistin in eleven organic of Organic Compounds in Articky (Coefficient 2001) in eleven organic of Organic Compounds in Articky (Coefficient 2001) in eleven organic of Organic Compounds in Articky (Coefficient 2001) in eleven organic solubility of genistin in eleven organic of Organic Compounds in Articky (Coefficient 2001) in eleven organic solution of Organic Compounds in Articky (Coefficient 2001) in eleven organic solution of Organic Compounds in Articky (Coefficient 2001) in eleven organic (The coefficient 2001) is eleven organic (The coefficient 2001 https://www.doi.org/10.1021/acs.jced.7b00851 https://www.doi.org/10.1016/j.fluid.2009.11.006 https://www.doi.org/10.1021/je060150a https://www.doi.org/10.1021/acs.jced.5b00007 https://www.doi.org/10.1016/j.fluid.2013.09.023

Isobaric vapor-liquid equilibrium for chloroform + ethanol + 1,3-Spherilyingi da zutan carpine in Twelve

Dicyanamide: Isobaric vapor-liquid equilibrium for chloroform + isopropanol + Plasmanyinyia atokenylonitrile and Birkenyophozakalevalerim Gakpan Departe Method:

Phase diagrams of (vapour + liquid) equilibrium for binary mixtures of Ales a Marken of Southand Marken zene The second secon Banalov sepon density and had ted the produce of the second secon Different followists between 27 mK and by the gen substitution effect on the solubility of perhalogenated being in a substitution effect on the solubility of perhalogenated being in a substitution effect on the binary Mixtures of Cyclohexanone was composed and the solution of tetracyanoborate and 1-butyl-1-methylpyrrolidinium bis(oxalato)borate:

https://www.doi.org/10.1016/j.fluid.2018.03.015 https://www.doi.org/10.1021/je4001334 **Shield interview intervie** End Status - vs. But, http://www.doi.org/10.1016/j.fluid.2010.06.00www.estem.chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint of the ternary system chloroform +Weash wero have on the constraint on ternary system chloroform +Weash wero have on the constraint on ternary system chloroform +Weash wero have on the constraint on ternary system chloroform +Weash wero have on the co https://www.doi.org/10.1016/j.fluid.2015.11.035 https://www.doi.org/10.1016/j.tca.2008.02.022 http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt https://www.doi.org/10.1016/j.fluid.2018.03.011 https://www.doi.org/10.1021/je700448v https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1016/j.jct.2007.09.002 http://webbook.nist.gov/cgi/cbook.cgi?ID=C67663&Units=SI https://www.doi.org/10.1016/j.fluid.2014.11.020 https://www.doi.org/10.1021/je200252c https://www.doi.org/10.1016/j.fluid.2014.06.021 https://www.doi.org/10.1021/acs.jced.8b01265 https://www.doi.org/10.1016/j.fluid.2006.02.017 https://www.doi.org/10.1021/je900594h https://www.doi.org/10.1016/j.tca.2004.07.014 https://www.doi.org/10.1021/je500050p https://www.doi.org/10.1021/je200637v https://www.doi.org/10.1016/j.jct.2012.09.013 https://www.doi.org/10.1021/je5007604 https://www.doi.org/10.1021/je700296x https://www.doi.org/10.1016/j.fluid.2007.07.035 https://www.doi.org/10.1021/acs.jced.7b00840 https://www.doi.org/10.1021/acs.jced.7b00695 https://www.doi.org/10.1016/j.jct.2016.10.006 https://www.doi.org/10.1016/j.jct.2012.09.017

Solubility of Valsartan in Different Organic Solvents and Ethanol + Water Briana Matures Pont (278 ars/to 313.15) Remperature-Dependent Viscosities of Kemperature-Dependent viscosition of Britherity Stems Involving Ionic 1:Elugiso-4-(methylsulfonyl)benzene in Britheritor (28) hootifspanso) Telineritor (28) hootifspanso) Angenerature Rependence of Densities And Excess Molar Volumes of the Mansurgentiand - Engine dence of Densities and Excess Molar Volumes of the Mansurgentiand - Engine drynamic Mansurgentiand - Engine drynamic Mansurgentiand - Engine drynamic Mansurgentian - Engine drynamic Bellythe and - Engin Bellythe and - Engin A qui sits nois ti piqutanto n facte chilly tind Activity role field of the second sec three different temperatures:

Legend

af: Acentric Factor chl: Standard liquid enthalpy of combustion cpg: Ideal gas heat capacity cpl: Liquid phase heat capacity dm: **Dipole Moment** dvisc: Dynamic viscosity Electron affinity ea: gf: Standard Gibbs free energy of formation Radius of Gyration gyrad: hf: Enthalpy of formation at standard conditions hfl: Liquid phase enthalpy of formation at standard conditions hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature Enthalpy of vaporization at standard conditions hvap: Enthalpy of vaporization at a given temperature hvapt: ie: Ionization energy kvisc: Kinematic viscosity Log10 of Water solubility in mol/l log10ws: logp: Octanol/Water partition coefficient mcvol: McGowan's characteristic volume nfpah: NFPA Health Rating **Critical Pressure** pc: pvap: Vapor pressure **Refractive Index** rfi: rhoc: Critical density

https://www.doi.org/10.1021/je8007815

https://www.doi.org/10.1021/je400965y

https://www.doi.org/10.1021/je301243f

https://www.doi.org/10.1021/acs.jced.5b00503

https://www.doi.org/10.1016/j.fluid.2015.03.036

https://www.doi.org/10.1007/s10765-008-0390-4 https://www.doi.org/10.1021/acs.jced.7b00194

https://www.doi.org/10.1016/j.fluid.2012.02.011 https://www.doi.org/10.1016/j.jct.2012.06.009

https://www.doi.org/10.1016/j.jct.2013.10.008

rhol:	Liquid Density
rinpol:	Non-polar retention indices
ripol:	Polar retention indices
speedsl:	Speed of sound in fluid
srf:	Surface Tension
tb:	Normal Boiling Point Temperature
tbp:	Boiling point at given pressure
tc:	Critical Temperature
tf:	Normal melting (fusion) point
tt:	Triple Point Temperature
VC:	Critical Volume
volm:	Molar Volume
zc:	Critical Compressibility
zra:	Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/21-368-0/Trichloromethane.pdf

Generated by Cheméo on 2024-04-29 09:07:03.635035467 +0000 UTC m=+16670872.555612794. Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.