Benzoic acid

|--|

Acide benzoique **BENZOATE** Benzenecarboxylic acid Benzeneformic acid Benzenemethanoic acid Benzenemethonic acid Benzoesaeure Benzoesaeure GK Benzoesaeure GV Benzoic acid, tech. Carboxybenzene Diacylic acid Dracylic acid E 210 Flowers of benjamin Flowers of benzoin HA 1 HA 1 (acid) Kyselina benzoova **NSC 149** Oracylic acid Phenylcarboxy Phenylcarboxylic acid Phenylformic acid **Retarder BA Retarder BAX** Retardex Salvo powder Salvo, liquid Solvo, powder **Tenn-Plas** InChI=1S/C7H6O2/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H,8,9) WPYMKLBDIGXBTP-UHFFFAOYSA-N C7H6O2 O=C(O)c1ccccc1 122.12 65-85-0

Inchi: InchiKey: Formula: SMILES: Mol. weight [g/mol]: CAS:

Physical Properties

Property code	Value	Unit	Source
af	0.6200		KDB
affp	821.10	kJ/mol	NIST Webbook
aigt	845.93	К	KDB
basg	790.10	kJ/mol	NIST Webbook
chl	-3227.00 ± 0.20	kJ/mol	NIST Webbook
chs	-3227.40 ± 0.30	kJ/mol	NIST Webbook
chs	-3228.06 ± 0.44	kJ/mol	NIST Webbook
chs	-3226.87 ± 0.18	kJ/mol	NIST Webbook
chs	-3254.71 ± 0.41	kJ/mol	NIST Webbook
chs	-3222.50 ± 4.20	kJ/mol	NIST Webbook
chs	-3227.30 ± 0.30	kJ/mol	NIST Webbook
chs	-3231.97	kJ/mol	NIST Webbook
chs	-3226.00	kJ/mol	NIST Webbook
chs	-3229.00	kJ/mol	NIST Webbook
chs	-3231.30	kJ/mol	NIST Webbook
chs	-3228.00 ± 0.50	kJ/mol	NIST Webbook
chs	-3229.80	kJ/mol	NIST Webbook
chs	-3226.39 ± 0.32	kJ/mol	NIST Webbook
chs	-3227.60 ± 0.30	kJ/mol	NIST Webbook
chs	-3227.51 ± 0.32	kJ/mol	NIST Webbook
chs	-3227.30 ± 0.30	kJ/mol	NIST Webbook
chs	-3227.20 ± 0.50	kJ/mol	NIST Webbook
chs	-3228.79	kJ/mol	NIST Webbook
dm	1.70	debye	KDB
fpo	394.26	K	KDB
gf	-210.60	kJ/mol	KDB
hf	-290.40	kJ/mol	KDB
hfs	-386.00	kJ/mol	NIST Webbook
hfs	-384.80 ± 0.50	kJ/mol	NIST Webbook
hfus	16.82	kJ/mol	Thermodynamics of molecular solids in organic solvents
hfus	18.02	kJ/mol	Odd even effect in melting properties of 12 alkane-a,x-diamides
hvap	78.90	kJ/mol	NIST Webbook
ie	9.80 ± 0.20	eV	NIST Webbook
ie	9.60	eV	NIST Webbook
ie	9.30	eV	NIST Webbook
ie	9.73 ± 0.09	eV	NIST Webbook

ie	9.47	eV	NIST Webbook
ie	9.75	eV	NIST Webbook
log10ws	-1.56		Aqueous Solubility Prediction Method
log10ws	-1.55		Aqueous and cosolvent solubility data for drug-like organic compounds
logp	1.385		Crippen Method
mcvol	93.170	ml/mol	McGowan Method
nfpaf	%!d(float64=1)		KDB
nfpah	%!d(float64=2)		KDB
рс	4560.00	kPa	KDB
rinpol	1163.00		NIST Webbook
rinpol	1210.00		NIST Webbook
rinpol	1196.00		NIST Webbook
rinpol	1171.00		NIST Webbook
rinpol	1156.00		NIST Webbook
rinpol	1152.00		NIST Webbook
rinpol	1197.00		NIST Webbook
rinpol	1199.00		NIST Webbook
rinpol	1155.00		NIST Webbook
rinpol	1162.00		NIST Webbook
rinpol	1159.00		NIST Webbook
rinpol	1160.00		NIST Webbook
rinpol	1165.00		NIST Webbook
rinpol	1164.00		NIST Webbook
rinpol	1184.00		NIST Webbook
rinpol	1164.00		NIST Webbook
rinpol	1167.00		NIST Webbook
rinpol	1150.00		NIST Webbook
rinpol	1149.00		NIST Webbook
rinpol	1143.00		NIST Webbook
rinpol	1170.00		NIST Webbook
rinpol	1210.00		NIST Webbook
rinpol	1197.00		NIST Webbook
rinpol	1138.00		NIST Webbook
rinpol	1161.00		NIST Webbook
rinpol	1172.00		NIST Webbook
rinpol	1214.00		NIST Webbook
rinpol	1148.00		NIST Webbook
rinpol	1135.00		NIST Webbook
rinpol	1200.00		NIST Webbook
rinpol	1131.00		NIST Webbook
rinpol	1164.00		NIST Webbook
rinpol	1131.00		NIST Webbook

rianal	1102.00	
rinpol	1163.00 1167.00	NIST Webbook NIST Webbook
rinpol	1178.00	NIST Webbook
rinpol	1180.00	NIST Webbook
rinpol		
rinpol	1163.00	NIST Webbook
rinpol	1180.00	NIST Webbook
rinpol	199.20	NIST Webbook
rinpol	196.50	NIST Webbook
rinpol	1162.00	NIST Webbook
rinpol	1162.00	NIST Webbook
rinpol	1162.00	NIST Webbook
rinpol	195.80	NIST Webbook
rinpol	1185.00	NIST Webbook
rinpol	1168.00	NIST Webbook
rinpol	193.90	NIST Webbook
rinpol	196.52	NIST Webbook
rinpol	1191.00	NIST Webbook
rinpol	200.65	NIST Webbook
rinpol	202.69	NIST Webbook
rinpol	1160.00	NIST Webbook
rinpol	1191.00	NIST Webbook
rinpol	1185.00	NIST Webbook
rinpol	1174.00	NIST Webbook
rinpol	1193.00	NIST Webbook
rinpol	1159.00	NIST Webbook
rinpol	1160.00	NIST Webbook
rinpol	1170.00	NIST Webbook
rinpol	1159.00	NIST Webbook
rinpol	1191.00	NIST Webbook
rinpol	1188.80	NIST Webbook
ripol	2387.00	NIST Webbook
ripol	2410.00	NIST Webbook
ripol	2433.00	NIST Webbook
ripol	2412.00	NIST Webbook
ripol	2387.00	NIST Webbook
ripol	2446.00	NIST Webbook
ripol	2380.00	NIST Webbook
ripol	2444.00	NIST Webbook
ripol	2380.00	NIST Webbook
ripol	2420.00	NIST Webbook
ripol	2423.00	NIST Webbook
ripol	2405.00	NIST Webbook
ripol	2420.00	NIST Webbook
ripol	2408.00	NIST Webbook
··	· · · · · · · · · · · · · · · · · · ·	

ripol	2420.00	NIST Webbook
ripol ripol	2420.00	NIST Webbook
•	2444.00	NIST Webbook
ripol	2433.00 2419.00	NIST Webbook
ripol		
ripol	2417.00	NIST Webbook
ripol	2426.00	NIST Webbook
ripol	2380.00	NIST Webbook
ripol	2432.00	NIST Webbook
ripol	2435.00	NIST Webbook
ripol	2399.00	NIST Webbook
ripol	2428.00	NIST Webbook
ripol	2404.00	NIST Webbook
ripol	2389.00	NIST Webbook
ripol	2455.00	NIST Webbook
ripol	2423.00	NIST Webbook
ripol	2400.00	NIST Webbook
ripol	2409.00	NIST Webbook
ripol	2420.00	NIST Webbook
ripol	2385.00	NIST Webbook
ripol	2410.00	NIST Webbook
ripol	2390.00	NIST Webbook
ripol	2407.00	NIST Webbook
ripol	2390.00	NIST Webbook
ripol	2409.00	NIST Webbook
ripol	2405.00	NIST Webbook
ripol	2410.00	NIST Webbook
ripol	2416.00	NIST Webbook
ripol	2408.00	NIST Webbook
ripol	2457.00	NIST Webbook
ripol	2449.00	NIST Webbook
ripol	2425.00	NIST Webbook
ripol	2451.00	NIST Webbook
ripol	2449.00	NIST Webbook
ripol	2417.00	NIST Webbook
ripol	2448.00	NIST Webbook
ripol	2438.00	NIST Webbook
ripol	2399.00	NIST Webbook
ripol	2428.00	NIST Webbook
ripol	2433.00	NIST Webbook
ripol	2401.00	NIST Webbook
ripol	2408.00	NIST Webbook
ripol	2392.00	NIST Webbook
ripol	2408.00	NIST Webbook
ripol	2436.00	NIST Webbook

ripol	2391.00		NIST Webbook
ripol	2400.00		NIST Webbook
ripol	2420.00		NIST Webbook
ripol	2432.00		NIST Webbook
SS	167.59	J/mol×K	NIST Webbook
SS	167.82	J/mol×K	NIST Webbook
SS	170.70	J/mol×K	NIST Webbook
SS	165.71	J/mol×K	NIST Webbook
SS	167.73	J/mol×K	NIST Webbook
tb	523.00	K	KDB
tb	522.20	K	NIST Webbook
tb	523.59 ± 0.20	K	NIST Webbook
tb	523.18 ± 0.20	K	NIST Webbook
tb	522.00	К	NIST Webbook
tc	752.00	K	KDB
tc	755.00	К	Vapor-liquid critical point measurements of fifteen compounds by the pulse-heating method
tf	395.53 ± 0.00	К	NIST Webbook
tf	395.00	К	Polar Mixed-Solid Solute Systems in Supercritical Carbon Dioxide: Entrainer Effect and Its Influence on Solubility and Selectivity
tf	395.55	К	Aqueous Solubility Prediction Method
tf	395.60	К	KDB
tf	395.15	К	Liquid pharmaceuticals formulation by eutectic formation
tf	395.37	К	Vapour pressures of selected organic compounds down to 1 mPa, using mass-loss Knudsen effusion method
tf	395.60	К	Abraham model correlations for describing the thermodynamic properties of solute transfer into pentyl acetate based on headspace chromatographic and solubility measurements
tf	395.50	К	The use of organic calibration standards in the enthalpy calibration of differential scanning calorimeters
tf	395.30	К	Isothermal Thermogravimetric Study for Determining Sublimation Enthalpies of Some Hydroxyflavones

tf	395.50	К	Solid-Liquid Equilibria for Benzoic Acid + p-Toluic Acid + Chloroform, Benzoic Acid + p-Toluic Acid + Acetic Acid, and Terephthalic Acid + Isophthalic Acid + N,N-Dimethylformamide
tf	394.95 ± 0.20	K	NIST Webbook
tf	395.50 ± 0.01	K	NIST Webbook
tf	395.15 ± 1.00	K	NIST Webbook
tf	394.70 ± 1.00	К	NIST Webbook
tf	395.15 ± 1.00	К	NIST Webbook
tf	395.00	К	NIST Webbook
tf	395.70 ± 0.10	K	NIST Webbook
tf	394.65 ± 0.40	K	NIST Webbook
tf	395.00 ± 2.00	K	NIST Webbook
tf	395.25 ± 0.40	K	NIST Webbook
tf	394.65 ± 1.50	K	NIST Webbook
tf	393.65 ± 1.50	K	NIST Webbook
tf	390.00 ± 1.00	K	NIST Webbook
tf	395.00 ± 2.00	K	NIST Webbook
tf	395.58 ± 0.15	K	NIST Webbook
tf	395.60 ± 0.06	K	NIST Webbook
tf	395.57 ± 0.06	K	NIST Webbook
tf	395.55 ± 0.06	K	NIST Webbook
tf	395.62 ± 0.06	K	NIST Webbook
tt	395.63	К	Solubility Data for Roflumilast and Maraviroc in Various Solvents between T = (278.2-323.2) K
tt	396.80	К	Solid-Liquid Equilibrium Measurements for Posaconazole and Voriconazole in Several Solvents between T = 278.2 and 323.2 K Using Differential Thermal Analysis/Thermal Gravimetric Analysis
tt	392.50	К	Solubility Determination of Nicotinamide and Its Application for the Cocrystallization with Benzoic Acid
tt	395.52 ± 0.01	К	NIST Webbook
tt	395.52 ± 0.01	К	NIST Webbook
tt	395.52 ± 0.01	К	NIST Webbook
tt	395.52 ± 0.01	К	NIST Webbook
VC	0.341	m3/kmol	KDB
ZC	0.2486940		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	193.99	J/mol×K	532.29	Joback Method
cpg	202.56	J/mol×K	567.22	Joback Method
cpg	237.41	J/mol×K	741.85	Joback Method
cpg	231.43	J/mol×K	706.92	Joback Method
cpg	224.97	J/mol×K	672.00	Joback Method
cpg	218.03	J/mol×K	637.07	Joback Method
cpg	210.57	J/mol×K	602.14	Joback Method
cpl	259.00	J/mol×K	413.00	NIST Webbook
cps	113.70	J/mol×K	224.76	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	155.20	J/mol×K	298.00	NIST Webbook
cps	145.10	J/mol×K	295.10	NIST Webbook
cps	160.20	J/mol×K	323.00	NIST Webbook
cps	146.81	J/mol×K	298.15	NIST Webbook
cps	146.81	J/mol×K	298.15	NIST Webbook
cps	149.79	J/mol×K	298.15	NIST Webbook
cps	147.02	J/mol×K	298.15	NIST Webbook
cps	146.31	J/mol×K	298.15	NIST Webbook
cps	130.00	J/mol×K	340.00	NIST Webbook
cps	147.14	J/mol×K	299.99	NIST Webbook
cps	167.40	J/mol×K	298.15	NIST Webbook
cps	146.80	J/mol×K	298.15	NIST Webbook
cps	149.00	J/mol×K	301.00	NIST Webbook
cps	147.07	J/mol×K	299.62	NIST Webbook
cps	146.79	J/mol×K	298.15	NIST Webbook
cps	146.65	J/mol×K	298.15	NIST Webbook
cps	146.23	J/mol×K	296.29	NIST Webbook
cps	147.03	J/mol×K	298.90	NIST Webbook
cps	147.78	J/mol×K	300.00	NIST Webbook
cps	178.60	J/mol×K	368.39	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State

cps	177.80	J/mol×K	366.44	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	176.90	J/mol×K	364.49	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	175.90	J/mol×K	362.53	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	175.10	J/mol×K	360.58	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	174.20	J/mol×K	358.64	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	173.30	J/mol×K	356.69	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	172.40	J/mol×K	354.75	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	171.60	J/mol×K	352.80	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	170.80	J/mol×K	350.86	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	169.90	J/mol×K	348.90	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	169.00	J/mol×K	346.95	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	168.10	J/mol×K	345.01	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	167.30	J/mol×K	343.06	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	166.30	J/mol×K	341.12	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	165.50	J/mol×K	339.17	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	164.50	J/mol×K	337.23	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	163.70	J/mol×K	335.28	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	162.90	J/mol×K	333.34	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	162.00	J/mol×K	331.39	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	161.20	J/mol×K	329.44	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	160.30	J/mol×K	327.50	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	159.50	J/mol×K	325.56	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	158.60	J/mol×K	323.61	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	157.60	J/mol×K	321.67	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	156.70	J/mol×K	319.73	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	155.90	J/mol×K	317.78	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	155.10	J/mol×K	315.83	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	154.20	J/mol×K	313.89	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	153.20	J/mol×K	311.95	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	152.30	J/mol×K	310.01	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	151.40	J/mol×K	308.07	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	150.60	J/mol×K	306.13	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	149.70	J/mol×K	304.19	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	148.70	J/mol×K	302.25	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	147.80	J/mol×K	300.31	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	146.90	J/mol×K	298.37	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	146.10	J/mol×K	296.43	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	145.20	J/mol×K	294.49	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	144.30	J/mol×K	292.55	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	143.40	J/mol×K	290.61	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	142.50	J/mol×K	288.67	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	141.60	J/mol×K	286.73	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	140.70	J/mol×K	284.79	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	139.80	J/mol×K	282.84	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	138.90	J/mol×K	280.91	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	138.00	J/mol×K	278.97	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	97.76	J/mol×K	187.75	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	137.20	J/mol×K	277.03	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	136.30	J/mol×K	275.10	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	135.40	J/mol×K	273.16	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	134.50	J/mol×K	271.22	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	133.70	J/mol×K	269.28	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	132.80	J/mol×K	267.35	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	131.90	J/mol×K	265.41	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	131.00	J/mol×K	263.47	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	130.10	J/mol×K	261.54	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	129.30	J/mol×K	259.60	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	128.30	J/mol×K	257.66	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	127.50	J/mol×K	255.73	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	126.50	J/mol×K	253.79	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	125.70	J/mol×K	251.84	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	124.80	J/mol×K	249.91	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	123.90	J/mol×K	247.97	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	123.10	J/mol×K	246.04	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	122.20	J/mol×K	244.10	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	121.30	J/mol×K	242.16	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	120.50	J/mol×K	240.23	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	119.60	J/mol×K	238.29	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	117.80	J/mol×K	234.43	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	117.10	J/mol×K	232.50	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	116.20	J/mol×K	230.56	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	115.40	J/mol×K	228.87	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	115.20	J/mol×K	228.63	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	114.60	J/mol×K	226.93	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	114.40	J/mol×K	226.70	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	7.24	J/mol×K	15.95	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	7.83	J/mol×K	17.21	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	9.96	J/mol×K	19.00	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	12.14	J/mol×K	20.93	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	14.48	J/mol×K	22.91	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	16.99	J/mol×K	25.23	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	19.32	J/mol×K	27.83	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	22.55	J/mol×K	30.45	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	25.66	J/mol×K	33.46	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	28.56	J/mol×K	36.82	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	31.83	J/mol×K	40.35	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	34.49	J/mol×K	42.49	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	35.05	J/mol×K	44.38	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	38.04	J/mol×K	46.36	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	39.20	J/mol×K	50.06	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	40.57	J/mol×K	52.26	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	41.94	J/mol×K	54.24	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	43.06	J/mol×K	54.48	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	43.66	J/mol×K	56.71	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	46.10	J/mol×K	59.17	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	45.51	J/mol×K	59.64	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	47.67	J/mol×K	63.04	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	50.03	J/mol×K	67.38	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	52.48	J/mol×K	72.18	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	54.70	J/mol×K	77.01	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	56.45	J/mol×K	81.66	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	58.38	J/mol×K	86.47	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	60.83	J/mol×K	91.42	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	62.66	J/mol×K	96.33	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	64.69	J/mol×K	101.31	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	66.75	J/mol×K	106.39	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	68.59	J/mol×K	111.42	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	70.27	J/mol×K	116.46	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	72.23	J/mol×K	121.51	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	74.39	J/mol×K	126.57	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	76.40	J/mol×K	131.52	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	78.39	J/mol×K	136.54	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	80.14	J/mol×K	141.64	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	81.95	J/mol×K	146.72	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	83.84	J/mol×K	151.83	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	85.94	J/mol×K	156.96	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	87.95	J/mol×K	162.08	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	90.16	J/mol×K	167.21	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	92.08	J/mol×K	172.34	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	93.88	J/mol×K	177.47	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	95.82	J/mol×K	182.61	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	113.70	J/mol×K	224.99	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	100.22	J/mol×K	192.89	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	102.35	J/mol×K	198.03	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	104.33	J/mol×K	203.11	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	106.33	J/mol×K	208.20	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	108.35	J/mol×K	213.34	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	110.69	J/mol×K	218.49	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	113.13	J/mol×K	223.64	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	115.06	J/mol×K	228.80	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	117.66	J/mol×K	233.96	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	120.10	J/mol×K	239.10	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	122.38	J/mol×K	244.26	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	124.56	J/mol×K	249.39	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	127.05	J/mol×K	254.51	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	129.62	J/mol×K	259.67	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to	
cps	131.98	J/mol×K	264.84	T=350 K Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	134.13	J/mol×K	269.99	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	137.14	J/mol×K	275.13	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	138.73	J/mol×K	280.31	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	141.06	J/mol×K	285.48	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	143.42	J/mol×K	290.65	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	146.34	J/mol×K	296.60	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	148.97	J/mol×K	302.17	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	151.12	J/mol×K	306.93	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	153.27	J/mol×K	312.15	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	155.37	J/mol×K	317.33	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	157.74	J/mol×K	322.49	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	160.60	J/mol×K	326.50	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	161.44	J/mol×K	330.48	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	163.80	J/mol×K	335.65	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	165.96	J/mol×K	340.82	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	146.06	J/mol×K	298.15	Reassembling and testing of a high-precision heat capacity drop calorimeter. Heat capacity of some polyphenyls at T = 298.15 K	
cps	2.27	J/mol×K	10.26	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	
cps	3.02	J/mol×K	11.36	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	
cps	3.97	J/mol×K	12.61	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	

cps	5.14	J/mol×K	13.99	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	6.54	J/mol×K	15.52	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	8.22	J/mol×K	17.23	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	10.17	J/mol×K	19.12	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	12.39	J/mol×K	21.21	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	14.97	J/mol×K	23.54	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	17.79	J/mol×K	26.10	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	20.88	J/mol×K	28.96	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	24.14	J/mol×K	32.16	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)

cps	27.61	J/mol×K	35.67	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	31.21	J/mol×K	39.58	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	34.80	J/mol×K	43.90	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	38.39	J/mol×K	48.73	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	42.02	J/mol×K	54.07	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	45.71	J/mol×K	60.00	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	49.33	J/mol×K	66.57	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	52.81	J/mol×K	73.89	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)

cps	56.69	J/mol×K	82.00	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	60.28	J/mol×K	91.01	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	63.46	J/mol×K	100.97	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	67.66	J/mol×K	111.11	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	71.28	J/mol×K	121.20	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	75.08	J/mol×K	131.23	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	78.93	J/mol×K	141.33	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	82.66	J/mol×K	151.47	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	86.28	J/mol×K	161.56	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)

cps	90.21	J/mol×K	171.65	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	94.38	J/mol×K	181.75	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	98.14	J/mol×K	191.83	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	101.91	J/mol×K	201.92	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	106.35	J/mol×K	212.02	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	110.99	J/mol×K	222.12	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	115.40	J/mol×K	232.21	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	119.97	J/mol×K	242.21	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)

cps	124.67	J/mol×K	252.40	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	128.80	J/mol×K	262.46	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	133.51	J/mol×K	272.51	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	138.20	J/mol×K	282.55	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	141.62	J/mol×K	292.70	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	144.34	J/mol×K	302.71	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	104.86	J/mol×K	208.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study
cps	105.69	J/mol×K	210.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study

cps	106.52	J/mol×K	211.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	107.61	J/mol×K	213.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	108.96	J/mol×K	216.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	110.02	J/mol×K	218.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	111.86	J/mol×K	221.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	113.15	J/mol×K	224.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	114.43	J/mol×K	226.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	

cps	114.68	J/mol×K	227.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric	
cps	116.19	J/mol×K	230.22	study Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	117.68	J/mol×K	233.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	119.14	J/mol×K	236.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	120.59	J/mol×K	239.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	122.50	J/mol×K	243.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	124.38	J/mol×K	247.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	

cps	126.69	J/mol×K	252.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	128.74	J/mol×K	256.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	130.54	J/mol×K	260.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	132.10	J/mol×K	264.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	134.09	J/mol×K	268.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	135.19	J/mol×K	271.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	136.06	J/mol×K	273.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	

cps	137.59	J/mol×K	276.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	138.90	J/mol×K	279.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	140.41	J/mol×K	283.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	142.15	J/mol×K	287.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	144.10	J/mol×K	291.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	144.31	J/mol×K	292.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	144.75	J/mol×K	293.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	

cps	145.18	J/mol×K	294.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	145.61	J/mol×K	295.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	146.70	J/mol×K	297.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	146.89	J/mol×K	298.15	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	146.92	J/mol×K	298.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	147.13	J/mol×K	298.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	148.44	J/mol×K	301.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	

cps	149.32	J/mol×K	303.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	150.19	J/mol×K	305.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	151.07	J/mol×K	307.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	152.18	J/mol×K	310.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	153.96	J/mol×K	314.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	155.75	J/mol×K	318.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	157.11	J/mol×K	321.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	2.28	J/mol×K	10.24	Low-temperature heat capacity measurements on insulating powders sealed under pressure	

cps	2.58	J/mol×K	10.71	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	2.90	J/mol×K	11.18	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	3.26	J/mol×K	11.68	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	3.65	J/mol×K	12.20	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	4.07	J/mol×K	12.74	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	4.54	J/mol×K	13.30	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	5.05	J/mol×K	13.89	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	5.60	J/mol×K	14.50	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	6.19	J/mol×K	15.14	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	6.66	J/mol×K	15.64	Low-temperature heat capacity measurements on insulating powders sealed under pressure	

cps	8.09	J/mol×K	17.10	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	9.72	J/mol×K	18.69	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	11.56	J/mol×K	20.41	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	13.61	J/mol×K	22.32	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	15.91	J/mol×K	24.40	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	18.40	J/mol×K	26.66	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	20.97	J/mol×K	29.13	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	23.77	J/mol×K	31.84	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	26.64	J/mol×K	34.80	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	29.60	J/mol×K	38.03	Low-temperature heat capacity measurements on insulating powders sealed under pressure	

cps	32.79	J/mol×K	41.56	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	35.88	J/mol×K	45.42	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	39.11	J/mol×K	49.63	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	42.18	J/mol×K	54.24	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	45.06	J/mol×K	59.28	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	47.92	J/mol×K	64.78	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	50.65	J/mol×K	70.79	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	53.75	J/mol×K	77.36	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	57.18	J/mol×K	84.51	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	61.03	J/mol×K	92.38	Low-temperature heat capacity measurements on insulating powders sealed under pressure

cps	64.26	J/mol×K	100.95	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	67.64	J/mol×K	110.98	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	71.22	J/mol×K	121.09	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	75.19	J/mol×K	131.21	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	78.86	J/mol×K	141.28	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	82.29	J/mol×K	151.34	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	85.76	J/mol×K	161.49	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	90.18	J/mol×K	171.59	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	95.02	J/mol×K	181.67	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	98.70	J/mol×K	191.74	Low-temperature heat capacity measurements on insulating powders sealed under pressure

cps	102.27	J/mol×K	201.82	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	106.37	J/mol×K	211.92	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	112.07	J/mol×K	222.00	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	117.31	J/mol×K	232.09	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	119.60	J/mol×K	242.17	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	124.22	J/mol×K	252.25	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	128.72	J/mol×K	262.35	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	133.00	J/mol×K	272.46	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	137.80	J/mol×K	282.54	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	141.72	J/mol×K	292.59	Low-temperature heat capacity measurements on insulating powders sealed under pressure

cps 146.37 J/molxK 302.66 Low-temperature heat capacity measurements on insulating powders sealed under pressure cps 2.29 J/molxK 10.30 Thermodynamic Properties of [Comm][NTP2] in the Condensed State cps 2.88 J/molxK 10.90 Thermodynamic Properties of [Comm][NTP2] in the Condensed State cps 3.09 J/molxK 11.50 Thermodynamic Properties of [Comm][NTP2] in the Condensed State cps 3.09 J/molxK 11.50 Thermodynamic Properties of [Comm][NTP2] in the Condensed State cps 3.53 J/molxK 12.10 Thermodynamic Properties of [Comm][NTP2] in the Condensed State cps 4.00 J/molxK 12.10 Thermodynamic Properties of [Comm][NTP2] in the Condensed State cps 4.00 J/molxK 12.71 Thermodynamic Properties of [Comm][NTP2] in the Condensed State cps 5.02 J/molxK 13.33 Thermodynamic Properties of [Comm][NTP2] in the Condensed State cps 5.57 J/molxK 13.84 Thermodynamic Properties of [Comm][NTP2] in the Condensed State cps 6.13 J/molxK 15.17 Thermodynamic Properties of [Comm][NTP2] in the Condensed State <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
Properties of (Commit[NT2] in the Condensed cps 2.68 J/molxK 10.90 Thermodynamic Properties of [Commit[NT2] in the Condensed cps 3.09 J/molxK 11.50 Thermodynamic Properties of [Commit[NT2] in the Condensed cps 3.53 J/molxK 12.10 Thermodynamic Properties of [Commit[NT2] in the Condensed cps 4.00 J/molxK 12.11 Thermodynamic Properties of [Commit[NT2] in the Condensed cps 4.00 J/molxK 12.71 Thermodynamic Properties of [Commit[NT2] in the Condensed cps 4.00 J/molxK 13.33 Thermodynamic Properties of [Commit[NT2] in the Condensed cps 5.02 J/molxK 13.33 Thermodynamic Properties of [Commit[NT12] in the Condensed cps 5.02 J/molxK 13.94 Thermodynamic Properties of [Commit[NT12] in the Condensed cps 5.57 J/molxK 14.56 Thermodynamic Properties of [Commit[NT12] in the Condensed cps 6.13 J/molxK 15.17 Thermodynamic Properties of [Commit[NT12] in the Condensed cps 6.82 J/molxK 15.90 Thermodynamic Properties of [Commit[NT12] in the Condensed cps 7.64 J/molxK 16.73 Thermodynamic Properties of [Commit[NT12] in the Condensed	cps	146.37	J/mol×K	302.66	heat capacity measurements on insulating powders sealed	
cps 3.09 J/molxK 11.50 Thermodynamic Properties of [CGmmi][NT12] in the Condensed State cps 3.53 J/molxK 12.10 Thermodynamic Properties of [CGmmi][NT12] in the Condensed State cps 3.53 J/molxK 12.10 Thermodynamic Properties of [CGmmi][NT12] in the Condensed State cps 4.00 J/molxK 12.71 Thermodynamic Properties of [CGmmi][NT12] in the Condensed State cps 4.00 J/molxK 12.71 Thermodynamic Properties of [CGmmi][NT12] in the Condensed State cps 4.50 J/molxK 13.33 Thermodynamic Properties of [CGmmi][NT12] in the Condensed State cps 5.02 J/molxK 13.94 Thermodynamic Properties of [CGmmi][NT12] in the Condensed State cps 5.02 J/molxK 14.56 Thermodynamic Properties of [CGmmi][NT12] in the Condensed State cps 6.13 J/molxK 15.17 Thermodynamic Properties of [CGmmi][NT12] in the Condensed State cps 6.82 J/molxK 15.17 Thermodynamic Properties of [CGmmi][NT12] in the Condensed State cps 6.82 J/molxK 15.17 Thermodynamic Properties of [CGmmi][NT12] in the Condensed State cps	cps	2.29	J/mol×K	10.30	Properties of [C6mim][NTf2] in the Condensed	
cps 3.53 J/molxK 12.10 Thermodynamic Properties of [C6mim][NT12] in the Condensed State cps 4.00 J/molxK 12.71 Thermodynamic Properties of [C6mim][NT12] in the Condensed State cps 4.00 J/molxK 12.71 Thermodynamic Properties of [C6mim][NT12] in the Condensed State cps 4.50 J/molxK 13.33 Thermodynamic Properties of [C6mim][NT12] in the Condensed State cps 5.02 J/molxK 13.94 Thermodynamic Properties of [C6mim][NT12] in the Condensed State cps 5.02 J/molxK 14.56 Thermodynamic Properties of [C6mim][NT12] in the Condensed State cps 5.57 J/molxK 14.56 Thermodynamic Properties of [C6mim][NT12] in the Condensed State cps 6.13 J/molxK 15.17 Thermodynamic Properties of [C6mim][NT12] in the Condensed State cps 6.82 J/molxK 15.90 Thermodynamic Properties of [C6mim][NT12] in the Condensed State cps 7.64 J/molxK 16.73 Thermodynamic Properties of [C6mim][NT12] in the Condensed State	cps	2.68	J/mol×K	10.90	Properties of [C6mim][NTf2] in the Condensed	
cps 4.00 J/molxK 12.71 Thermodynamic Properties of IC6mm[[NT12] in the Condensed State cps 4.50 J/molxK 13.33 Thermodynamic Properties of IC6mm[[NT12] in the Condensed State cps 4.50 J/molxK 13.33 Thermodynamic Properties of IC6mm[[NT12] in the Condensed State cps 5.02 J/molxK 13.94 Thermodynamic Properties of IC6mm[[NT12] in the Condensed State cps 5.02 J/molxK 14.56 Thermodynamic Properties of IC6mm[[NT12] in the Condensed State cps 5.57 J/molxK 14.56 Thermodynamic Properties of IC6mm[[NT12] in the Condensed State cps 6.13 J/molxK 15.17 Thermodynamic Properties of IC6mm[[NT12] in the Condensed State cps 6.82 J/molxK 15.17 Thermodynamic Properties of IC6mm[[NT12] in the Condensed State cps 6.82 J/molxK 15.17 Thermodynamic Properties of IC6mm[[NT12] in the Condensed State cps 7.64 J/molxK 16.73 Thermodynamic Properties of IC6mm[[NT12] in the Condensed State	cps	3.09	J/mol×K	11.50	Properties of [C6mim][NTf2] in the Condensed	
cps 4.50 J/molxK 13.33 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 5.02 J/molxK 13.94 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 5.02 J/molxK 13.94 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 5.57 J/molxK 14.56 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 6.13 J/molxK 15.17 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 6.82 J/molxK 15.17 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 6.82 J/molxK 15.90 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 7.64 J/molxK 16.73 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	cps	3.53	J/mol×K	12.10	Properties of [C6mim][NTf2] in the Condensed	
cps 5.02 J/molxK 13.94 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 5.57 J/molxK 14.56 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 5.57 J/molxK 14.56 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 6.13 J/molxK 15.17 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 6.13 J/molxK 15.17 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 6.82 J/molxK 15.90 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 7.64 J/molxK 16.73 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	cps	4.00	J/mol×K	12.71	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed Statecps5.57J/mol×K14.56Thermodynamic Properties of [C6mim][NTf2] in the Condensed Statecps6.13J/mol×K15.17Thermodynamic Properties of [C6mim][NTf2] in the Condensed Statecps6.82J/mol×K15.17Thermodynamic Properties of [C6mim][NTf2] in the Condensed Statecps6.82J/mol×K15.90Thermodynamic Properties of [C6mim][NTf2] in the Condensed Statecps7.64J/mol×K16.73Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	cps	4.50	J/mol×K	13.33	Properties of [C6mim][NTf2] in the Condensed	
Cps 6.13 J/mol×K 15.17 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 6.82 J/mol×K 15.90 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 6.82 J/mol×K 15.90 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 6.82 J/mol×K 15.90 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 7.64 J/mol×K 16.73 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	cps	5.02	J/mol×K	13.94	Properties of [C6mim][NTf2] in the Condensed	
Cps 6.82 J/molxK 15.90 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 7.64 J/molxK 16.73 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 7.64 J/molxK 16.73 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	cps	5.57	J/mol×K	14.56	Properties of [C6mim][NTf2] in the Condensed	
cps 7.64 J/mol×K 16.73 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State intermodynamic Properties of [C6mim][NTf2] in the Condensed in the Condensed Properties of [C6mim][NTf2] in the Condensed	cps	6.13	J/mol×K	15.17	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed	cps	6.82	J/mol×K	15.90	Properties of [C6mim][NTf2] in the Condensed	
	cps	7.64	J/mol×K	16.73	Properties of [C6mim][NTf2] in the Condensed	

cps	8.47	J/mol×K	17.56	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	9.33	J/mol×K	18.39	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	10.21	J/mol×K	19.22	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	11.09	J/mol×K	20.06	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	12.34	J/mol×K	21.19	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	13.90	J/mol×K	22.62	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	15.49	J/mol×K	24.04	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	17.05	J/mol×K	25.46	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	18.61	J/mol×K	26.89	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	20.19	J/mol×K	28.33	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	21.74	J/mol×K	29.77	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.43	J/mol×K	31.37	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	25.21	J/mol×K	33.11	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	26.94	J/mol×K	34.87	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	28.60	J/mol×K	36.62	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	30.21	J/mol×K	38.37	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	31.74	J/mol×K	40.13	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	33.33	J/mol×K	41.98	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	34.99	J/mol×K	43.94	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	36.51	J/mol×K	45.90	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	38.01	J/mol×K	47.87	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	39.43	J/mol×K	49.84	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	40.77	J/mol×K	51.81	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	42.06	J/mol×K	53.78	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	43.33	J/mol×K	55.75	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	44.56	J/mol×K	57.72	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	45.75	J/mol×K	59.69	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	46.91	J/mol×K	61.67	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	48.01	J/mol×K	63.65	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	49.04	J/mol×K	65.63	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	50.10	J/mol×K	67.61	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	51.07	J/mol×K	69.60	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	52.00	J/mol×K	71.59	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	52.93	J/mol×K	73.59	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	53.90	J/mol×K	75.59	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	54.88	J/mol×K	77.59	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	56.16	J/mol×K	80.71	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	56.92	J/mol×K	82.55	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	57.66	J/mol×K	84.38	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	58.43	J/mol×K	86.22	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	59.17	J/mol×K	88.06	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	59.92	J/mol×K	89.91	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	60.64	J/mol×K	91.62	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	60.69	J/mol×K	91.76	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	61.50	J/mol×K	93.75	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	62.21	J/mol×K	95.60	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	62.98	J/mol×K	97.45	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	63.71	J/mol×K	99.31	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	64.44	J/mol×K	101.17	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	65.18	J/mol×K	103.02	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	65.85	J/mol×K	104.89	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	66.57	J/mol×K	106.75	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	67.29	J/mol×K	108.62	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	68.01	J/mol×K	110.49	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	68.69	J/mol×K	112.36	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	69.38	J/mol×K	114.23	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	70.13	J/mol×K	116.10	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	70.81	J/mol×K	117.97	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	71.50	J/mol×K	119.85	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	72.20	J/mol×K	121.73	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	72.89	J/mol×K	123.61	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	73.60	J/mol×K	125.49	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	74.30	J/mol×K	127.38	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	75.00	J/mol×K	129.26	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	75.72	J/mol×K	131.15	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	76.42	J/mol×K	133.03	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	77.12	J/mol×K	134.92	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	77.81	J/mol×K	136.81	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	78.54	J/mol×K	138.70	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	79.26	J/mol×K	140.60	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	79.99	J/mol×K	142.49	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	80.73	J/mol×K	144.38	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	81.45	J/mol×K	146.27	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	82.16	J/mol×K	148.17	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	82.89	J/mol×K	150.07	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	83.64	J/mol×K	151.98	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	84.39	J/mol×K	153.88	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	85.06	J/mol×K	155.78	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	85.81	J/mol×K	157.69	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	86.55	J/mol×K	159.60	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	87.30	J/mol×K	161.50	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	88.05	J/mol×K	163.41	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	88.80	J/mol×K	165.32	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	89.55	J/mol×K	167.23	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	90.30	J/mol×K	169.14	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	91.04	J/mol×K	171.05	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	91.79	J/mol×K	172.96	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	92.62	J/mol×K	174.88	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	93.37	J/mol×K	176.79	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	94.12	J/mol×K	178.70	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	94.95	J/mol×K	180.62	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	95.78	J/mol×K	182.54	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	96.53	J/mol×K	184.47	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	97.28	J/mol×K	186.39	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	98.11	J/mol×K	188.31	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	98.94	J/mol×K	190.22	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	99.77	J/mol×K	192.14	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	100.50	J/mol×K	194.07	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	101.40	J/mol×K	195.99	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	102.20	J/mol×K	197.92	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	103.00	J/mol×K	199.85	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	103.80	J/mol×K	201.78	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	104.60	J/mol×K	203.71	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	105.40	J/mol×K	205.64	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	106.30	J/mol×K	207.57	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	107.10	J/mol×K	209.50	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	107.90	J/mol×K	211.44	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	108.70	J/mol×K	213.37	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps 109.50 J/molxK 215.31 Thermodynamic Propenties of (ComminityTt2) in the Condensed State cps 110.30 J/molxK 217.24 Thermodynamic Propenties of (ComminityTt2) in the Condensed State cps 111.20 J/molxK 219.18 Thermodynamic Propenties of (ComminityTt2) in the Condensed State cps 112.00 J/molxK 221.12 Thermodynamic Properties of (ComminityTt2) in the Condensed State cps 112.70 J/molxK 222.63 Thermodynamic Properties of (ComminityTt2) in the Condensed State cps 112.70 J/molxK 223.05 Thermodynamic Properties of (ComminityTt2) in the Condensed State cps 112.80 J/molxK 236.36 Thermodynamic Properties of (ComminityTt2) in the Condensed State cps 118.70 J/molxK 236.36 Thermodynamic Properties of (ComminityTt2) in the Condensed State dvisc 0.0006638 Paxs 419.06 Joback Method dvisc 0.0003697 Paxs 434.54 Joback Method dvisc 0.0003697 Paxs 343.57 Joback Method dvisc						
Properties of ICGmini[[NT2] in the Condensedcps111.20J/molxK219.18Thermodynamic Properties of ICGmini[[NT2] in the Condensedcps112.00J/molxK221.12Thermodynamic Properties of ICGmini[[NT2] in the Condensedcps112.00J/molxK221.12Thermodynamic Properties of ICGmini[[NT2] in the Condensedcps112.70J/molxK222.63Thermodynamic Properties of ICGmini[[NT2] in the Condensedcps112.80J/molxK223.05Thermodynamic Properties of ICGmini[[NT2] in the Condensedcps118.70J/molxK236.36Thermodynamic Properties of ICGmini[[NT2] in the Condensedcps118.70J/molxK236.36Thermodynamic Properties of ICGmini[[NT2] in the Condenseddvisc0.0006638Paxs419.06Joback Methoddvisc0.0002251Paxs494.54Joback Methoddvisc0.0003482Paxs345.67Joback Methoddvisc0.0003484Paxs381.31Joback Methoddvisc0.0001471Paxs532.29Joback Methoddvisc0.0001471Paxs532.29Joback Methodhfust17.30kJ/mol395.00NIST Webbookhfust17.40kJ/mol395.00NIST Webbookhfust17.40kJ/mol395.50NIST Webbookhfust17.10kJ/mol395.40NIST Webbookhfust17.10kJ/mol<	cps	109.50	J/mol×K	215.31	Properties of [C6mim][NTf2] in the Condensed	
Properties of [CGmm][NT12] in the Condensed State cps 112.00 J/molxK 221.12 Thermodynamic Properties of [CGmm][NT12] in the Condensed State cps 112.70 J/molxK 222.63 Properties of [CGmm][NT12] in the Condensed State cps 112.80 J/molxK 223.05 Thermodynamic Properties of [CGmm][NT12] in the Condensed State cps 112.80 J/molxK 223.05 Thermodynamic Properties of [CGmm][NT12] in the Condensed State cps 118.70 J/molxK 236.36 Thermodynamic Properties of [CGmm][NT12] in the Condensed State dvisc 0.0006638 Paxs 419.06 Joback Method dvisc 0.0001461 Paxs 305.82 Joback Method dvisc 0.0003897 Paxs 445.6.30 Joback Method dvisc 0.0003897 Paxs 381.31 Joback Method dvisc 0.0003897 Paxs 381.0	cps	110.30	J/mol×K	217.24	Properties of [C6mim][NTf2] in the Condensed	
Cps112.70J/molxK222.63Properties of [C6mm][NTP2] in the Condensed Statecps112.70J/molxK223.05Thermodynamic Properties of [C6mm][NTP2] in the Condensed Statecps112.80J/molxK223.05Thermodynamic Properties of [C6mm][NTP2] in the Condensed Statecps118.70J/molxK236.36Thermodynamic Properties of [C6mm][NTP2] in the Condensed Statecps118.70J/molxK236.36Thermodynamic Properties of [C6mm][NTP2] in the Condensed Statedvisc0.0006638Paxs419.06Joback Methoddvisc0.000251Paxs494.54Joback Methoddvisc0.0031481Paxs305.82Joback Methoddvisc0.0031482Paxs343.57Joback Methoddvisc0.0001471Paxs532.29Joback Methoddvisc0.0001471Paxs532.29Joback Methoddvisc0.0001471Paxs532.29Joback Methodhfust17.32kJ/mol395.00NIST Webbookhfust17.40kJ/mol395.50NIST Webbookhfust17.30kJ/mol395.50NIST Webbookhfust17.30kJ/mol395.50NIST Webbookhfust18.00kJ/mol395.50NIST Webbookhfust18.00kJ/mol395.50NIST Webbookhfust18.00kJ/mol395.50NIST Webbookhfust18.00 </td <td>cps</td> <td>111.20</td> <td>J/mol×K</td> <td>219.18</td> <td>Properties of [C6mim][NTf2] in the Condensed</td> <td></td>	cps	111.20	J/mol×K	219.18	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim]INTF2] in the Condensed Statecps112.80J/molxK223.05Thermodynamic Properties of [C6mim][NTF2] in the Condensed Statecps118.70J/molxK236.36Thermodynamic Properties of [C6mim][NTF2] in the Condensed Statedvisc0.0006638Paxs419.06Joback Methoddvisc0.0002251Paxs494.54Joback Methoddvisc0.0003697Paxs305.82Joback Methoddvisc0.0003697Paxs456.80Joback Methoddvisc0.00013384Paxs381.31Joback Methoddvisc0.0001384Paxs532.29Joback Methoddvisc0.0001471Paxs532.29Joback Methoddvisc17.32kJ/mol395.00NIST Webbookhfust17.32kJ/mol395.00NIST Webbookhfust17.30kJ/mol395.50NIST Webbookhfust17.30kJ/mol395.50NIST Webbookhfust16.99kJ/mol395.52NIST Webbookhfust18.00kJ/mol395.52NIST Webbookhfust17.10kJ/mol395.52NIST Webbookhfust17.00kJ/mol395.52NIST Webbookhfust17.10kJ/mol395.52NIST Webbookhfust18.00kJ/mol395.52NIST Webbookhfust17.10kJ/mol395.52NIST Webbookhfust18.00<	cps	112.00	J/mol×K	221.12	Properties of [C6mim][NTf2] in the Condensed	
Properties of [CGmim][NT12] in the Condensed Statecps118.70J/molxK236.36Thermodynamic Properties of [CGmim][NT12] in the Condensed Statedvisc0.0006638Paxs419.06Joback Methoddvisc0.0002251Paxs494.54Joback Methoddvisc0.0001461Paxs305.82Joback Methoddvisc0.0003697Paxs456.80Joback Methoddvisc0.0003697Paxs456.80Joback Methoddvisc0.0001471Paxs532.29Joback Methoddvisc0.0001471Paxs532.29Joback Methoddvisc0.0001471Paxs532.29Joback Methodhfust17.32kJ/mol395.00NIST Webbookhfust17.32kJ/mol395.00NIST Webbookhfust17.30kJ/mol395.00NIST Webbookhfust17.30kJ/mol395.50NIST Webbookhfust17.30kJ/mol395.50NIST Webbookhfust17.30kJ/mol395.50NIST Webbookhfust16.99kJ/mol396.90NIST Webbookhfust17.10kJ/mol395.40NIST Webbookhfust17.10kJ/mol395.40NIST Webbookhfust17.10kJ/mol392.00NIST Webbookhfust17.10kJ/mol392.00NIST Webbookhfust18.02kJ/mol302.00NIST Webbookhfust	cps	112.70	J/mol×K	222.63	Properties of [C6mim][NTf2] in the Condensed	
Properties of [CGmim][NTf2] in the Condensed State dvisc 0.0006638 Paxs 419.06 Joback Method dvisc 0.0002251 Paxs 494.54 Joback Method dvisc 0.0091461 Paxs 305.82 Joback Method dvisc 0.0031482 Paxs 343.57 Joback Method dvisc 0.0003697 Paxs 456.80 Joback Method dvisc 0.0013384 Paxs 381.31 Joback Method dvisc 0.0001471 Paxs 532.29 Joback Method dvisc 0.0001471 Paxs 532.29 Joback Method hfust 17.32 kJ/mol 395.00 NIST Webbook hfust 18.01 kJ/mol 395.00 NIST Webbook hfust 17.40 kJ/mol 395.00 NIST Webbook hfust 17.99 kJ/mol 395.50 NIST Webbook hfust 17.30 kJ/mol 396.90 NIST Webbook hfust 16.99 kJ/mol<	cps	112.80	J/mol×K	223.05	Properties of [C6mim][NTf2] in the Condensed	
dvisc 0.0002251 Paxs 494.54 Joback Method dvisc 0.0091461 Paxs 305.82 Joback Method dvisc 0.0031482 Paxs 343.57 Joback Method dvisc 0.0003697 Paxs 456.80 Joback Method dvisc 0.0013384 Paxs 381.31 Joback Method dvisc 0.0001471 Paxs 532.29 Joback Method dvisc 0.0001471 Paxs 532.29 Joback Method hfust 17.32 kJ/mol 395.00 NIST Webbook hfust 18.01 kJ/mol 395.52 NIST Webbook hfust 17.40 kJ/mol 395.00 NIST Webbook hfust 16.23 kJ/mol 395.50 NIST Webbook hfust 17.30 kJ/mol 395.50 NIST Webbook hfust 16.99 kJ/mol 396.90 NIST Webbook hfust 18.00 kJ/mol 395.52 NIST Webbook	cps	118.70	J/mol×K	236.36	Properties of [C6mim][NTf2] in the Condensed	
dvisc 0.0091461 Paxs 305.82 Joback Method dvisc 0.0031482 Paxs 343.57 Joback Method dvisc 0.0003697 Paxs 456.80 Joback Method dvisc 0.0013384 Paxs 381.31 Joback Method dvisc 0.0001471 Paxs 532.29 Joback Method dvisc 0.0001471 Paxs 532.29 Joback Method hfust 17.32 kJ/mol 395.00 NIST Webbook hfust 18.01 kJ/mol 395.52 NIST Webbook hfust 17.40 kJ/mol 395.00 NIST Webbook hfust 16.23 kJ/mol 395.00 NIST Webbook hfust 17.30 kJ/mol 395.50 NIST Webbook hfust 17.30 kJ/mol 395.50 NIST Webbook hfust 16.99 kJ/mol 395.52 NIST Webbook hfust 18.00 kJ/mol 395.52 NIST Webbook hfu	dvisc	0.0006638	Pa×s	419.06	Joback Method	
dvisc 0.0031482 Paxs 343.57 Joback Method dvisc 0.0003697 Paxs 456.80 Joback Method dvisc 0.0013384 Paxs 381.31 Joback Method dvisc 0.0001471 Paxs 532.29 Joback Method hfust 17.32 kJ/mol 395.00 NIST Webbook hfust 18.01 kJ/mol 395.52 NIST Webbook hfust 17.40 kJ/mol 395.00 NIST Webbook hfust 16.23 kJ/mol 395.00 NIST Webbook hfust 17.30 kJ/mol 395.50 NIST Webbook hfust 17.30 kJ/mol 395.50 NIST Webbook hfust 17.30 kJ/mol 394.40 NIST Webbook hfust 16.99 kJ/mol 395.52 NIST Webbook hfust 16.99 kJ/mol 395.52 NIST Webbook hfust 17.10 kJ/mol 395.40 NIST Webbook hsubt <td>dvisc</td> <td>0.0002251</td> <td>Paxs</td> <td>494.54</td> <td>Joback Method</td> <td></td>	dvisc	0.0002251	Paxs	494.54	Joback Method	
dvisc 0.0003697 Paxs 456.80 Joback Method dvisc 0.0013384 Paxs 381.31 Joback Method dvisc 0.0001471 Paxs 532.29 Joback Method hfust 17.32 kJ/mol 395.00 NIST Webbook hfust 18.01 kJ/mol 395.52 NIST Webbook hfust 17.40 kJ/mol 395.00 NIST Webbook hfust 16.23 kJ/mol 395.00 NIST Webbook hfust 16.23 kJ/mol 395.50 NIST Webbook hfust 17.30 kJ/mol 395.50 NIST Webbook hfust 17.30 kJ/mol 395.50 NIST Webbook hfust 16.99 kJ/mol 396.90 NIST Webbook hfust 18.00 kJ/mol 395.52 NIST Webbook hfust 18.00 kJ/mol 395.52 NIST Webbook hfust 17.10 kJ/mol 395.40 NIST Webbook hsubt	dvisc	0.0091461	Pa×s	305.82	Joback Method	
dvisc 0.0013384 Paxs 381.31 Joback Method dvisc 0.0001471 Paxs 532.29 Joback Method hfust 17.32 kJ/mol 395.00 NIST Webbook hfust 18.01 kJ/mol 395.52 NIST Webbook hfust 17.40 kJ/mol 395.00 NIST Webbook hfust 16.23 kJ/mol 395.00 NIST Webbook hfust 16.23 kJ/mol 395.50 NIST Webbook hfust 17.99 kJ/mol 395.50 NIST Webbook hfust 17.30 kJ/mol 395.50 NIST Webbook hfust 17.30 kJ/mol 396.90 NIST Webbook hfust 16.99 kJ/mol 396.90 NIST Webbook hfust 18.00 kJ/mol 395.52 NIST Webbook hfust 17.10 kJ/mol 395.40 NIST Webbook hsubt 88.10 ± 0.20 kJ/mol 302.00 NIST Webbook hsubt <td>dvisc</td> <td>0.0031482</td> <td>Paxs</td> <td>343.57</td> <td>Joback Method</td> <td></td>	dvisc	0.0031482	Paxs	343.57	Joback Method	
dvisc 0.0001471 Paxs 532.29 Joback Method hfust 17.32 kJ/mol 395.00 NIST Webbook hfust 18.01 kJ/mol 395.52 NIST Webbook hfust 17.40 kJ/mol 395.00 NIST Webbook hfust 17.40 kJ/mol 395.00 NIST Webbook hfust 16.23 kJ/mol 395.00 NIST Webbook hfust 17.99 kJ/mol 395.50 NIST Webbook hfust 17.30 kJ/mol 395.50 NIST Webbook hfust 17.30 kJ/mol 396.90 NIST Webbook hfust 16.99 kJ/mol 396.90 NIST Webbook hfust 18.00 kJ/mol 395.52 NIST Webbook hfust 17.10 kJ/mol 395.40 NIST Webbook hsubt 88.10 ± 0.20 kJ/mol 302.00 NIST Webbook hsubt 88.30 ± 2.90 kJ/mol 302.00 NIST Webbook	dvisc	0.0003697	Paxs	456.80	Joback Method	
hfust 17.32 kJ/mol 395.00 NIST Webbook hfust 18.01 kJ/mol 395.52 NIST Webbook hfust 17.40 kJ/mol 395.00 NIST Webbook hfust 16.23 kJ/mol 395.00 NIST Webbook hfust 16.23 kJ/mol 395.00 NIST Webbook hfust 17.99 kJ/mol 395.50 NIST Webbook hfust 17.30 kJ/mol 395.50 NIST Webbook hfust 17.30 kJ/mol 396.90 NIST Webbook hfust 16.99 kJ/mol 396.90 NIST Webbook hfust 16.99 kJ/mol 395.52 NIST Webbook hfust 18.00 kJ/mol 395.52 NIST Webbook hfust 17.10 kJ/mol 395.40 NIST Webbook hsubt 88.10 ± 0.20 kJ/mol 302.00 NIST Webbook hsubt 88.30 ± 2.90 kJ/mol 302.00 NIST Webbook	dvisc	0.0013384	Pa×s	381.31	Joback Method	
hfust 18.01 kJ/mol 395.52 NIST Webbook hfust 17.40 kJ/mol 395.00 NIST Webbook hfust 16.23 kJ/mol 395.00 NIST Webbook hfust 17.99 kJ/mol 395.50 NIST Webbook hfust 17.99 kJ/mol 395.50 NIST Webbook hfust 17.30 kJ/mol 394.40 NIST Webbook hfust 16.99 kJ/mol 396.90 NIST Webbook hfust 16.99 kJ/mol 395.52 NIST Webbook hfust 16.99 kJ/mol 395.52 NIST Webbook hfust 17.10 kJ/mol 395.40 NIST Webbook hsubt 88.10 ± 0.20 kJ/mol 302.00 NIST Webbook hsubt 88.30 ± 2.90 kJ/mol 302.00 NIST Webbook	dvisc	0.0001471	Pa×s	532.29	Joback Method	
hfust 17.40 kJ/mol 395.00 NIST Webbook hfust 16.23 kJ/mol 395.00 NIST Webbook hfust 17.99 kJ/mol 395.50 NIST Webbook hfust 17.30 kJ/mol 394.40 NIST Webbook hfust 17.30 kJ/mol 396.90 NIST Webbook hfust 16.99 kJ/mol 396.90 NIST Webbook hfust 18.00 kJ/mol 395.52 NIST Webbook hfust 18.00 kJ/mol 395.40 NIST Webbook hfust 17.10 kJ/mol 395.40 NIST Webbook hsubt 88.10 ± 0.20 kJ/mol 302.00 NIST Webbook	hfust	17.32	kJ/mol	395.00	NIST Webbook	
hfust 16.23 kJ/mol 395.00 NIST Webbook hfust 17.99 kJ/mol 395.50 NIST Webbook hfust 17.30 kJ/mol 394.40 NIST Webbook hfust 16.99 kJ/mol 396.90 NIST Webbook hfust 16.99 kJ/mol 395.52 NIST Webbook hfust 18.00 kJ/mol 395.52 NIST Webbook hfust 17.10 kJ/mol 395.40 NIST Webbook hsubt 88.10 ± 0.20 kJ/mol 302.00 NIST Webbook hsubt 88.30 ± 2.90 kJ/mol 302.00 NIST Webbook	hfust	18.01	kJ/mol	395.52	NIST Webbook	
hfust 17.99 kJ/mol 395.50 NIST Webbook hfust 17.30 kJ/mol 394.40 NIST Webbook hfust 16.99 kJ/mol 396.90 NIST Webbook hfust 18.00 kJ/mol 395.52 NIST Webbook hfust 17.10 kJ/mol 395.40 NIST Webbook hsubt 88.10 ± 0.20 kJ/mol 302.00 NIST Webbook hsubt 88.30 ± 2.90 kJ/mol 302.00 NIST Webbook	hfust	17.40	kJ/mol	395.00	NIST Webbook	
hfust 17.30 kJ/mol 394.40 NIST Webbook hfust 16.99 kJ/mol 396.90 NIST Webbook hfust 18.00 kJ/mol 395.52 NIST Webbook hfust 17.10 kJ/mol 395.40 NIST Webbook hsubt 88.10 ± 0.20 kJ/mol 302.00 NIST Webbook hsubt 88.30 ± 2.90 kJ/mol 302.00 NIST Webbook	hfust	16.23	kJ/mol	395.00	NIST Webbook	
hfust 16.99 kJ/mol 396.90 NIST Webbook hfust 18.00 kJ/mol 395.52 NIST Webbook hfust 17.10 kJ/mol 395.40 NIST Webbook hsubt 88.10 ± 0.20 kJ/mol 302.00 NIST Webbook hsubt 88.30 ± 2.90 kJ/mol 302.00 NIST Webbook	hfust	17.99	kJ/mol	395.50	NIST Webbook	
hfust 18.00 kJ/mol 395.52 NIST Webbook hfust 17.10 kJ/mol 395.40 NIST Webbook hsubt 88.10 ± 0.20 kJ/mol 302.00 NIST Webbook hsubt 88.30 ± 2.90 kJ/mol 302.00 NIST Webbook	hfust	17.30	kJ/mol	394.40	NIST Webbook	
hfust 17.10 kJ/mol 395.40 NIST Webbook hsubt 88.10 ± 0.20 kJ/mol 302.00 NIST Webbook hsubt 88.30 ± 2.90 kJ/mol 302.00 NIST Webbook	hfust	16.99	kJ/mol	396.90	NIST Webbook	
hsubt 88.10 ± 0.20 kJ/mol 302.00 NIST Webbook hsubt 88.30 ± 2.90 kJ/mol 302.00 NIST Webbook	hfust	18.00	kJ/mol	395.52	NIST Webbook	
hsubt 88.30 ± 2.90 kJ/mol 302.00 NIST Webbook	hfust	17.10	kJ/mol	395.40	NIST Webbook	
	hsubt	88.10 ± 0.20	kJ/mol	302.00	NIST Webbook	
heybt 84.50 + 0.50 k l/mal 385.50 NIGT Wahbaak	hsubt	88.30 ± 2.90	kJ/mol	302.00	NIST Webbook	
	hsubt	84.50 ± 0.50	kJ/mol	385.50	NIST Webbook	

hsubt	85.00 ± 2.00	kJ/mol	369.50	NIST Webbook	
hsubt	89.10 ± 0.20	kJ/mol	345.00	NIST Webbook	
hsubt	88.50 ± 1.60	kJ/mol	305.50	NIST Webbook	
hsubt	92.90 ± 0.20	kJ/mol	295.50	NIST Webbook	
hsubt	87.80	kJ/mol	398.00	NIST Webbook	
hsubt	95.10 ± 1.80	kJ/mol	294.00	NIST Webbook	
hsubt	90.80 ± 0.60	kJ/mol	306.00	NIST Webbook	
hsubt	87.50 ± 0.30	kJ/mol	335.00	NIST Webbook	
hsubt	88.70 ± 0.90	kJ/mol	310.50	NIST Webbook	
hsubt	86.70	kJ/mol	328.00	NIST Webbook	
hsubt	86.60 ± 1.70	kJ/mol	302.50	NIST Webbook	
hsubt	93.00 ± 4.00	kJ/mol	312.50	NIST Webbook	
hsubt	90.00 ± 0.50	kJ/mol	308.00	NIST Webbook	
hsubt	90.90 ± 2.00	kJ/mol	375.00	NIST Webbook	
hsubt	89.23	kJ/mol	298.15	NIST Webbook	
hsubt	89.00 ± 0.40	kJ/mol	360.50	NIST Webbook	
hsubt	89.30 ± 0.40	kJ/mol	360.50	NIST Webbook	
hsubt	90.50 ± 0.30	kJ/mol	358.50	NIST Webbook	
hsubt	90.00 ± 0.30	kJ/mol	300.50	NIST Webbook	
hsubt	86.60 ± 1.30	kJ/mol	302.50	NIST Webbook	
hsubt	85.80	kJ/mol	361.00	NIST Webbook	
hsubt	89.10	kJ/mol	314.00	NIST Webbook	
hsubt	90.40 ± 0.80	kJ/mol	358.00	NIST Webbook	
hsubt	88.90 ± 0.50	kJ/mol	363.00	NIST Webbook	
hsubt	90.90	kJ/mol	299.00	NIST Webbook	
hsubt	84.20 ± 0.80	kJ/mol	318.00	NIST Webbook	
hsubt	84.10 ± 0.80	kJ/mol	318.00	NIST Webbook	
hsubt	91.00 ± 2.00	kJ/mol	303.00	NIST Webbook	
hsubt	89.50 ± 0.05	kJ/mol	353.50	NIST Webbook	
hvapt	90.50	kJ/mol	331.00	Studying the sublimation thermodynamics of ethionamide and pyridine carbothioamide isomers by transpiration method	
hvapt	90.80	kJ/mol	308.21	Enthalpy of sublimation of natural aromatic amino acids determined by Knudsen's effusion mass spectrometric method	
hvapt	50.63	kJ/mol	523.00	KDB	
hvapt	87.45	kJ/mol	335.00	NIST Webbook	
hvapt	63.30 ± 0.60	kJ/mol	408.50	NIST Webbook	

hvapt	66.30	kJ/mol	464.00	NIST Webbook	
hvapt	67.80	kJ/mol	398.00	NIST Webbook	
hvapt	65.40	kJ/mol	428.00	NIST Webbook	
hvapt	67.70	kJ/mol	460.50	NIST Webbook	
hvapt	87.30	kJ/mol	357.00	Sublimation and thermal decomposition of ammonia borane: Competitive processes controlled by pressure	
hvapt	90.20	kJ/mol	348.00	Evaluation of sublimation enthalpy by thermogravimetry: Analysis of the diffusion effects in the case of methyl and phenyl substituted hydantoins	
psub	4.08e-04	kPa	309.25	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	2.71e-04	kPa	305.24	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	2.65e-04	kPa	305.24	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	2.10e-04	kPa	303.16	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	2.01e-04	kPa	303.16	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	2.03e-04	kPa	303.16	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	1.55e-04	kPa	301.04	The design, construction, and testing of a new Knudsen effusion apparatus	

psub	1.60e-04	kPa	301.04	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.62e-04	kPa	301.04	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.31e-04	kPa	299.33	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.34e-04	kPa	299.33	The design, construction, and testing of a new Knudsen effusion apparatus
psub	8.73e-03	kPa	338.98	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	5.54e-03	kPa	334.07	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	3.32e-04	kPa	307.13	The design, construction, and testing of a new Knudsen effusion apparatus
psub	2.12e-03	kPa	324.39	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	1.27e-03	kPa	319.48	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	7.38e-04	kPa	314.40	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation

psub	7.54e-04	kPa	314.59	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	4.36e-04	kPa	309.63	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	2.50e-04	kPa	304.75	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	3.26e-04	kPa	307.13	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.43e-04	kPa	300.03	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	6.93e-03	kPa	336.46	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	4.36e-03	kPa	331.62	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	2.68e-03	kPa	326.76	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	1.64e-03	kPa	321.91	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation

psub9.69e-04kPa316.91 and vapor pressures and vapor					
and vaporization enthalpies of 5-nonanone, linatol and 6-methyl-5-hepten-2-one. Data evaluationpsub3.35e-04kPa307.27Vapor pressures and vaporization enthalpies of tinatol and 6-methyl-5-hepten-2-one. Data evaluationpsub1.93e-04kPa302.51Vapor pressures and vaporization enthalpies of tinatol and 6-methyl-5-hepten-2-one. Data evaluationpsub1.93e-04kPa302.51Vapor pressures and vaporization enthalpies of sonanone, linatol and 6-methyl-5-hepten-2-one. Data evaluationpsub1.08e-04kPa297.67Vapor pressures and vaporization enthalpies of 5-nonanone, linatool and 6-methyl-5-hepten-2-one. Data evaluationpsub3.43e-03kPa329.20Vapor pressures and vaporization enthalpies of 5-nonanone, enthalpies of 5-nonanone, enthalpies of 5-nonanone, enthalpies of 6-methyl-5-hepten-2-one. Data evaluationpsub3.43e-03kPa329.20Vapor pressures and vaporization enthalpies of 6-methyl-5-hepten-2-one. Data evaluationpsub3.23e-04kPa307.13The design, construction, and testing of a new Knudsen effusion apparatuspsub4.14e-04kPa309.25The design, construction, and testing of a new Knudsen effusion apparatuspsub5.25e-04kPa311.30The design, construction, and testing of a new Knudsen effusion	psub	9.69e-04	kPa	316.91	and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one.
and vaporzation enthalpies of 5-nonanone, linalod and 6-methyl-5-hepten-2-one. Data evaluationpsub1.93e-04kPa302.51Vapor pressures and vapor zation enthalpies of 5-nonanone, linalod and 6-methyl-5-hepten-2-one. Data evaluationpsub1.08e-04kPa297.67Vapor pressures and vapor zation 	psub	5.73e-04	kPa	312.08	and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one.
and vaporization enthalpies of 5-nonanone, linatol and 6-methyl-5-hepten-2-one. Data evaluationpsub1.08e-04kPa297.67Vapor pressures and vaporization enthalpies of 5-nonanone, linatol and 6-methyl-5-hepten-2-one. Data evaluationpsub3.43e-03kPa329.20Vapor pressures and vaporization 	psub	3.35e-04	kPa	307.27	and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one.
and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluationpsub3.43e-03kPa329.20Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluationpsub3.23e-04kPa307.13The design, construction, and 	psub	1.93e-04	kPa	302.51	and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one.
and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluationpsub3.23e-04kPa307.13The design, construction, and testing of a new Knudsen effusion apparatuspsub4.14e-04kPa309.25The design, construction, and testing of a new Knudsen effusion 	psub	1.08e-04	kPa	297.67	and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one.
psub4.14e-04kPa309.25The design, construction, and testing of a new Knudsen effusion apparatuspsub4.20e-04kPa309.25The design, construction, and testing of a new Knudsen effusion apparatuspsub4.20e-04kPa309.25The design, construction, and testing of a new Knudsen effusion apparatuspsub5.25e-04kPa311.30The design, 	psub	3.43e-03	kPa	329.20	and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one.
Psub4.20e-04kPa309.25The design, construction, and testing of a new Knudsen effusion apparatuspsub4.20e-04kPa309.25The design, construction, and testing of a new Knudsen effusion apparatuspsub5.25e-04kPa311.30The design, construction, and testing of a new Knudsen effusion apparatus	psub	3.23e-04	kPa	307.13	construction, and testing of a new Knudsen effusion
psub 5.25e-04 kPa 311.30 The design, construction, and testing of a new Knudsen effusion apparatus The design, construction, and testing of a new Knudsen effusion	psub	4.14e-04	kPa	309.25	construction, and testing of a new Knudsen effusion
construction, and testing of a new Knudsen effusion	psub	4.20e-04	kPa	309.25	construction, and testing of a new Knudsen effusion
	psub	5.25e-04	kPa	311.30	construction, and testing of a new Knudsen effusion

psub	5.12e-04	kPa	311.30	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	5.24e-04	kPa	311.30	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	6.43e-04	kPa	313.20	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	1.42e-04	kPa	299.96	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one Data evaluation	e.
psub	6.22e-04	kPa	313.20	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	6.47e-04	kPa	313.20	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	8.15e-04	kPa	315.27	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	7.99e-04	kPa	315.27	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	8.30e-04	kPa	315.27	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	1.05e-03	kPa	317.32	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	1.02e-03	kPa	317.32	The design, construction, and testing of a new Knudsen effusion apparatus	

psub	1.01e-03	kPa	317.32	The design, construction, and testing of a new Knudsen effusion apparatus
psub	2.85e-04	kPa	307.15	Sublimation thermodynamics of four fluoroquinolone antimicrobial compounds
psub	1.67e-03	kPa	323.15	Sublimation thermodynamics of four fluoroquinolone antimicrobial compounds
psub	7.51e-03	kPa	338.15	Sublimation thermodynamics of four fluoroquinolone antimicrobial compounds
psub	0.03	kPa	354.15	Sublimation thermodynamics of four fluoroquinolone antimicrobial compounds
psub	1.02e-03	kPa	318.02	The thermodynamic properties of 1-bromoadamantane in the gaseous state
psub	1.69e-03	kPa	322.70	The thermodynamic properties of 1-bromoadamantane in the gaseous state
psub	1.74e-03	kPa	322.99	The thermodynamic properties of 1-bromoadamantane in the gaseous state
psub	2.89e-03	kPa	327.90	The thermodynamic properties of 1-bromoadamantane in the gaseous state
psub	4.57e-03	kPa	332.60	The thermodynamic properties of 1-bromoadamantane in the gaseous state

psub	2.05e-04	kPa	302.99	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	3.78e-04	kPa	308.00	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	6.61e-04	kPa	313.19	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.07e-03	kPa	317.89	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.10e-03	kPa	317.91	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.13e-03	kPa	318.02	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.10e-03	kPa	318.02	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.83e-03	kPa	322.70	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.82e-03	kPa	322.95	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.88e-03	kPa	322.99	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	

psub	2.98e-03	kPa	327.63	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	3.10e-03	kPa	327.88	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	3.13e-03	kPa	327.90	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	4.82e-03	kPa	332.80	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	4.89e-03	kPa	332.85	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	7.79e-03	kPa	337.71	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	9.50e-04	kPa	316.30	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	1.47e-03	kPa	320.40	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	2.14e-03	kPa	324.00	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	

psub	3.02e-03	kPa	327.40	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	4.95e-03	kPa	332.40	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	8.09e-03	kPa	337.40	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	0.01	kPa	342.30	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	0.02	kPa	347.30	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	0.03	kPa	352.40	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	0.05	kPa	357.40	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	

psub	0.07	kPa	362.50	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods
psub	0.11	kPa	367.50	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods
psub	4.95e-03	kPa	332.60	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states
psub	2.61e-04	kPa	305.24	The design, construction, and testing of a new Knudsen effusion apparatus
psub	6.43e-04	kPa	312.86	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states
rhol	1075.00	kg/m3	403.00	KDB
sfust	45.51	J/mol×K	395.52	NIST Webbook
sfust	41.10	J/mol×K	395.00	NIST Webbook
sfust	43.80	J/mol×K	395.00	NIST Webbook
sfust	44.00	J/mol×K	395.00	NIST Webbook
sfust	45.52	J/mol×K	395.52	NIST Webbook
ssubt	299.30	J/mol×K	298.15	NIST Webbook
svapt	261.00	J/mol×K	335.00	NIST Webbook
tcondl	0.14	W/m×K	406.80	Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K and 465 K
tcondl	0.14	W/m×K	424.40	Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K and 465 K

tcondl	0.13	W/m×K	444.90	Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K and 465 K
tcondl	0.13	W/m×K	465.10	Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K and 465 K

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source	
tbrp	406.20	K	1.30	NIST Webbook	
tbrp	406.00	K	1.30	NIST Webbook	

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.50844e+01
Coeff. B	-4.20667e+03
Coeff. C	-1.20264e+02
Temperature range (K), min.	395.52
Temperature range (K), max.	550.71
Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C^{*}ln(T) + D^{*}T^{2}$
Coeff. A	-7.46843e+01
Coeff. B	-4.45389e+03
Coeff. C	1.47811e+01

Coeff. B	-4.45389e+03
Coeff. C	1.47811e+01
Coeff. D	-1.71981e-05
Temperature range (K), min.	395.52
Temperature range (K), max.	560.15

Sources

Solubility of Benzoic Acid in Aqueous Solubility and Dissolution Properties Solubility and Dissolution Properties Metasular panyanche and allow of the Solubility at Tetrane Bylowing ine in Ninemo Metabolic by Binary

Solvent Systems: Solubilities of Benzoic Acid and Phthalic Acid in Acetic Acid + Water Selveriting of Benzene Carboxylic Acids in Isobutyl Acetate from (299.73 Mapos-liquic critical point Sourcements of fifteen compounds Sourcements of fifteen compounds and Triphenyltin Chloride in Sourcemansatures to and provide the and Standard thermodynamic functions of Sasa ODS Parabillese (Costs to Dof: Benzoic Acid:

Solubility determination and thermodynamic models for deaydrosterone acetate in

denydroseprandrosterone acetate in mixed solvents of (ethyl acetate + methanols, fethyl acetate + ethanol) and mixed solvents and all appetition ine: Madisews effastolfinaliss enthalpy by specnosnaving try Analysis of the university of the aceta actigation of solfiem is groute a solvent of the aceta standards in the enthalpy calibration of and the senting calibration of the senting calibration of and the senting calibration of the senting calibration of and the senting calibration of the senting calibrat

of CO2 + Hexane: Solubility, Model Correlation, and Solvent Effect of

Solient Elector Soliente de la constance de la constance de la cons Affethyl-4- nitrobenzoic acid in twelve organic solvents from T = 203 Tuping and full full full properties in full of the solvent from T = 203 Tuping and full full full of the solvent in the solvent from T = 203 Tuping and full full for the solvent for t Thermodynamic Study of Ammonium Ben 2020 Clansbook (Syapor Pressure:

Solubility of Benzoic Acid in Aqueous Solutions Containing Ethanol or Newbijity of Benzoic Acid and Aspirin in Pure Solvents Using Focused Beam Equilibrium Measure in the condensed and Thermodynamic Analysis of Bioactive Reside and the condensed and Thermodynamic Analysis of Bioactive Reside and the condensed and the solubility and pissolution of solubility and Dissolution Properties Solubility and Dissolution Properties Solubility and Dissolution Properties Measure and Dissolution Properties Solubility and Dissolution Properties Measure and Dissolution Properties Measure and Dissolution Properties Network and Dissolution Properties Solubility and Dissolution Properties Measure and Dissolution Properties Me https://www.doi.org/10.1021/je800507m https://www.doi.org/10.1021/acs.jced.8b00888 http://pubs.acs.org/doi/abs/10.1021/ci990307I https://www.doi.org/10.1021/je600527c https://www.doi.org/10.1021/je101319f https://www.doi.org/10.1016/j.fluid.2014.07.038 https://www.doi.org/10.1021/je9000944 https://www.doi.org/10.1016/j.jct.2015.08.031 https://www.doi.org/10.1021/je900999b https://www.doi.org/10.1016/j.jct.2016.06.014 http://webbook.nist.gov/cgi/cbook.cgi?ID=C65850&Units=SI https://www.doi.org/10.1016/j.jct.2019.04.006 https://www.doi.org/10.1016/j.tca.2017.06.024 https://www.doi.org/10.1016/j.tca.2008.12.029 https://www.doi.org/10.1016/j.tca.2012.03.028 https://www.doi.org/10.1021/je300488y https://www.doi.org/10.1021/acs.jced.8b01226 https://www.doi.org/10.1021/acs.jced.8b00170 https://www.doi.org/10.1016/j.jct.2016.07.023 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=955 https://www.doi.org/10.1021/acs.jced.9b00710 https://www.doi.org/10.1016/j.fluid.2014.09.013

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

Benzoic acid derivatives: Evaluation of https://www.doi.org/10.1016/j.tca.2015.03.026 thermochemical properties with Sontprementage experimental a feudy for forentioning feudimention Enthalpies MSSon Mythogena avones:

Solubility of benzoic acid in acetone, 2-propanol, acetic acid and udilewane BengeimAnitain Mixed

decomposition of ammonia borane: ogunation of ammonia borane: og Solubilities of benzoic acid in binary (benzyl alcohol + benzaldehyde) Schwitt Alider in the solubility Determination and Model Correlation of Golubility of Banzoin and Solie Flage Asiderite Subcritical Water at Temperatures Ranging from (298 to Pommin [INTf2] in the Condensed State: The design, construction, and testing of a new Knudsen effusion apparatus: of a new Knudsen effusion apparatus: Partition behaviour of benzoic acid in bit a new Knudsen endusion apparatus. Partition behaviour of benzoic acid in (water + n-dodecane) solutions at T = Soluhitich leasurgment and Thermodynamic Modeling of Benzoic Aelubility of Several: and Binary priver by the solution of the solution appendix of the solution of the solution appendix of the solution of the solution of the solution of the solution appendix of the solution of the solutio boricine paraburn danid a paoitiers by many internet in the paraburn danid a paoitiers by many internet in the paraburn danid and enthalpies of 5-nonanone, linalool and solutify of the paraburn danid doeling et an and a solution of the paraburn danities of the and a solution of the paraburn danities and a solution danities and a solution of the paraburn danities a bioactive

Solubility Measurement of Cetirizine Policounity of Abeterneties, Strand Mathematics, Solubility Measurement of Cetirizine Applicounity of Abeterneties, Ethanol, Activity of Abeterneties, Strand Water Pelefizio Conference Strand + p-Toluic Acid + Chloroform, Benzoic Acid + p-Toluic Acid + Acetic Acid, and Terephthalic Acid + Isophthalic Acid + N,N-Dimethylformamide:

https://www.doi.org/10.1021/acs.jced.7b01034 http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1016/j.fluid.2010.06.021 https://www.doi.org/10.1021/je060408x **Sevents**ment and thermodynamic **Solution** and thermodynamic **So** för Pösäconazole and Voriconazole in Selver in the service of the program of the service of the https://www.doi.org/10.1016/j.tca.2015.08.021 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751500/ https://www.doi.org/10.1016/j.jct.2014.12.003 https://www.doi.org/10.1021/acs.jced.8b01181 https://www.doi.org/10.1021/je900769d https://www.doi.org/10.1021/je060094d https://www.doi.org/10.1016/j.jct.2005.08.013 https://www.doi.org/10.1016/j.jct.2008.06.014 https://www.doi.org/10.1021/acs.jced.8b00025 https://www.doi.org/10.1021/acs.jced.6b00163 https://www.doi.org/10.1021/acs.jced.8b00952 https://www.doi.org/10.1021/acs.jced.8b00560 https://www.doi.org/10.1021/acs.jced.8b00416 https://www.doi.org/10.1016/j.jct.2004.12.006 https://www.doi.org/10.1016/j.jct.2013.11.038 compounds down to 1 mPa, using massing selected organic https://www.doi.org/10.1016/j.jct.2013.11.038 https://www.doi.org/10.1021/je400602s 2,2',6,6'-Tetrabromo-4,4'-isopropylidene Pitchon the seduct and power to the second secon https://www.doi.org/10.1016/j.fluid.2014.11.026 https://www.doi.org/10.1021/acs.jced.8b00192 https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1016/j.fluid.2006.06.011 https://www.doi.org/10.1016/j.fluid.2006.10.014 https://www.doi.org/10.1016/j.jct.2019.03.015
 Tradesymptotic properties
 Control of the properties
 Co https://www.doi.org/10.1021/acs.jced.9b00620 https://www.doi.org/10.1021/acs.jced.7b00958

Solubility parameter of lenalidomide for https://www.doi.org/10.1016/j.jct.2018.12.035 predicting the type of solubility profile anarappartanonic repenties in amic Galouinetry and Density Functional Theory and pensity Functional and prostories in a solution of the solution and prostories in a solution of the solution of the solution and prostories in a solution of the solution of the solution solvents: Measurement of Heat Capacity by

Adjabatic Calorimetry and Calculation Sputie in the second soft Sharing dynamic functions of Sharing dynamic function of the second soft Autor and the second soft second soft Sharing dynamic for second soft second soft second soft Sharing the second seco

Polar Mixed-Solid Solute Systems in Supercritical Carbon Dioxide: Entrainer Supercritical Carbon Dioxide: Entrainer Ersetwilltad Meanwice Modeling of Management and Modeling of Management and Modeling of Social Social Science Social Social Science Social Social Social Social Methanol + Water and Acetic Acid + para-tert-Butyltoluene Binary Systems at Various Temperatures:

Legend

https://www.doi.org/10.1021/acs.jced.8b01075 https://www.doi.org/10.1016/j.jct.2009.10.002 https://www.doi.org/10.1016/j.fluid.2012.06.010 https://www.doi.org/10.1021/je100658y https://www.doi.org/10.1021/acs.jced.9b00190 https://www.doi.org/10.1016/j.fluid.2017.05.009

https://www.doi.org/10.1021/je700486g

https://www.doi.org/10.1021/acs.jced.6b00230

https://www.doi.org/10.1021/acs.jced.6b00464

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=955

af:	Acentric Factor
affp:	Proton affinity
aigt:	Autoignition Temperature
basg:	Gas basicity
chl:	Standard liquid enthalpy of combustion
chs:	Standard solid enthalpy of combustion
cpg:	Ideal gas heat capacity
cpl:	Liquid phase heat capacity
cps:	Solid phase heat capacity
dm:	Dipole Moment
dvisc:	Dynamic viscosity
fpo:	Flash Point (Open Cup Method)
gf:	Standard Gibbs free energy of formation
hf:	Enthalpy of formation at standard conditions
hfs:	Solid phase enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions
hfust:	Enthalpy of fusion at a given temperature
hsubt:	Enthalpy of sublimation at a given temperature
hvap:	Enthalpy of vaporization at standard conditions
hvapt:	Enthalpy of vaporization at a given temperature
ie:	Ionization energy
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
nfpaf:	NFPA Fire Rating
nfpah:	NFPA Health Rating

рс:	Critical Pressure
psub:	Sublimation pressure
pvap:	Vapor pressure
rhol:	Liquid Density
rinpol:	Non-polar retention indices
ripol:	Polar retention indices
sfust:	Entropy of fusion at a given temperature
SS:	Solid phase molar entropy at standard conditions
ssubt:	Entropy of sublimation at a given temperature
svapt:	Entropy of vaporization at a given temperature
tb:	Normal Boiling Point Temperature
tbrp:	Boiling point at reduced pressure
tc:	Critical Temperature
tcondl:	Liquid thermal conductivity
tf:	Normal melting (fusion) point
tt:	Triple Point Temperature
vc:	Critical Volume
ZC:	Critical Compressibility

Latest version available from:

https://www.chemeo.com/cid/18-337-8/Benzoic-acid.pdf

Generated by Cheméo on 2024-04-28 18:50:33.030617031 +0000 UTC m=+16619481.951194339.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.