Benzoic acid

Other names: Acide benzoique

BENZOATE

Benzenecarboxylic acid Benzeneformic acid Benzenemethanoic acid Benzenemethonic acid

Benzoesaeure
Benzoesaeure GK
Benzoesaeure GV
Benzoic acid, tech.
Carboxybenzene
Diacylic acid
Dracylic acid

E 210

Flowers of benjamin Flowers of benzoin

HA₁

HA 1 (acid)

Kyselina benzoova

NSC 149 Oracylic acid Phenylcarboxy

Phenylcarboxylic acid
Phenylformic acid

Retarder BA
Retarder BAX
Retardex
Salvo powder
Salvo, liquid
Solvo, powder

Tenn-Plas

InChl=1S/C7H6O2/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H,8,9)

InchiKey: WPYMKLBDIGXBTP-UHFFFAOYSA-N

Formula: C7H6O2

SMILES: O=C(O)c1ccccc1

Mol. weight [g/mol]: 122.12 CAS: 65-85-0

Physical Properties

Property code	Value	Unit	Source
af	0.6200		KDB
affp	821.10	kJ/mol	NIST Webbook
aigt	845.93	K	KDB
basg	790.10	kJ/mol	NIST Webbook
chl	-3227.00 ± 0.20	kJ/mol	NIST Webbook
chs	-3228.79	kJ/mol	NIST Webbook
chs	-3222.50 ± 4.20	kJ/mol	NIST Webbook
chs	-3226.87 ± 0.18	kJ/mol	NIST Webbook
chs	-3254.71 ± 0.41	kJ/mol	NIST Webbook
chs	-3227.30 ± 0.30	kJ/mol	NIST Webbook
chs	-3228.06 ± 0.44	kJ/mol	NIST Webbook
chs	-3227.20 ± 0.50	kJ/mol	NIST Webbook
chs	-3227.30 ± 0.30	kJ/mol	NIST Webbook
chs	-3227.51 ± 0.32	kJ/mol	NIST Webbook
chs	-3227.60 ± 0.30	kJ/mol	NIST Webbook
chs	-3226.39 ± 0.32	kJ/mol	NIST Webbook
chs	-3229.80	kJ/mol	NIST Webbook
chs	-3228.00 ± 0.50	kJ/mol	NIST Webbook
chs	-3231.30	kJ/mol	NIST Webbook
chs	-3229.00	kJ/mol	NIST Webbook
chs	-3226.00	kJ/mol	NIST Webbook
chs	-3231.97	kJ/mol	NIST Webbook
chs	-3227.40 ± 0.30	kJ/mol	NIST Webbook
dm	1.70	debye	KDB
fpo	394.26	K	KDB
gf	-210.60	kJ/mol	KDB
hf	-290.40	kJ/mol	KDB
hfs	-386.00	kJ/mol	NIST Webbook
hfs	-384.80 ± 0.50	kJ/mol	NIST Webbook
hfus	18.02	kJ/mol	Odd even effect in melting properties of 12 alkane-a,x-diamides
hfus	16.82	kJ/mol	Thermodynamics of molecular solids in organic solvents
hvap	78.90	kJ/mol	NIST Webbook
ie	9.47	eV	NIST Webbook
ie	9.80 ± 0.20	eV	NIST Webbook
ie	9.73 ± 0.09	eV	NIST Webbook
ie	9.30	eV	NIST Webbook

ie	9.75	eV	NIST Webbook
ie	9.60	eV	NIST Webbook
log10ws	-1.56		Aqueous Solubility Prediction Method
log10ws	-1.55		Aqueous and cosolvent solubility data for drug-like organic compounds
logp	1.385		Crippen Method
mcvol	93.170	ml/mol	McGowan Method
nfpaf	%!d(float64=1)		KDB
nfpah	%!d(float64=2)		KDB
рс	4560.00	kPa	KDB
rinpol	199.20		NIST Webbook
rinpol	1160.00		NIST Webbook
rinpol	202.69		NIST Webbook
rinpol	200.65		NIST Webbook
rinpol	196.52		NIST Webbook
rinpol	193.90		NIST Webbook
rinpol	195.80		NIST Webbook
rinpol	196.50		NIST Webbook
rinpol	1191.00		NIST Webbook
rinpol	1180.00		NIST Webbook
rinpol	1185.00		NIST Webbook
rinpol	1193.00		NIST Webbook
rinpol	1159.00		NIST Webbook
rinpol	1160.00		NIST Webbook
rinpol	1170.00		NIST Webbook
rinpol	1159.00		NIST Webbook
rinpol	1178.00		NIST Webbook
rinpol	1174.00		NIST Webbook
rinpol	1191.00		NIST Webbook
rinpol	1191.00		NIST Webbook
rinpol	1188.80		NIST Webbook
rinpol	1168.00		NIST Webbook
rinpol	1185.00		NIST Webbook
rinpol	1162.00		NIST Webbook
rinpol	1162.00		NIST Webbook
rinpol	1162.00		NIST Webbook
rinpol	1163.00		NIST Webbook
rinpol	1131.00		NIST Webbook
rinpol	1164.00		NIST Webbook
rinpol	1131.00		NIST Webbook
rinpol	1200.00		NIST Webbook
rinpol	1148.00		NIST Webbook
rinpol	1214.00		NIST Webbook
-			

rinpol	1172.00	NIST Webbook
rinpol	1161.00	NIST Webbook
rinpol	1138.00	NIST Webbook
rinpol	1197.00	NIST Webbook
rinpol	1210.00	NIST Webbook
rinpol	1170.00	NIST Webbook
rinpol	1163.00	NIST Webbook
rinpol	1149.00	NIST Webbook
rinpol	1150.00	NIST Webbook
rinpol	1167.00	NIST Webbook
rinpol	1164.00	NIST Webbook
rinpol	1184.00	NIST Webbook
rinpol	1164.00	NIST Webbook
rinpol	1165.00	NIST Webbook
rinpol	1160.00	NIST Webbook
rinpol	1159.00	NIST Webbook
rinpol	1162.00	NIST Webbook
rinpol	1163.00	NIST Webbook
rinpol	1199.00	NIST Webbook
rinpol	1197.00	NIST Webbook
rinpol	1152.00	NIST Webbook
rinpol	1156.00	NIST Webbook
rinpol	1171.00	NIST Webbook
rinpol	1196.00	NIST Webbook
rinpol	1210.00	NIST Webbook
rinpol	1155.00	NIST Webbook
rinpol	1135.00	NIST Webbook
rinpol	1167.00	NIST Webbook
rinpol	1180.00	NIST Webbook
rinpol	1143.00	NIST Webbook
ripol	2410.00	NIST Webbook
ripol	2405.00	NIST Webbook
ripol	2409.00	NIST Webbook
ripol	2390.00	NIST Webbook
ripol	2407.00	NIST Webbook
ripol	2390.00	NIST Webbook
ripol	2410.00	NIST Webbook
ripol	2385.00	NIST Webbook
ripol	2410.00	NIST Webbook
ripol	2409.00	NIST Webbook
ripol	2400.00	NIST Webbook
ripol	2432.00	NIST Webbook
ripol	2416.00	NIST Webbook
ripol	2455.00	NIST Webbook

ripol	2389.00	NIST Webbook
ripol	2404.00	NIST Webbook
ripol	2428.00	NIST Webbook
ripol	2408.00	NIST Webbook
ripol	2408.00	NIST Webbook
ripol	2457.00	NIST Webbook
ripol	2449.00	NIST Webbook
ripol	2425.00	NIST Webbook
ripol	2451.00	NIST Webbook
ripol	2449.00	NIST Webbook
ripol	2417.00	NIST Webbook
ripol	2448.00	NIST Webbook
ripol	2438.00	NIST Webbook
ripol	2399.00	NIST Webbook
ripol	2428.00	NIST Webbook
ripol	2433.00	NIST Webbook
ripol	2399.00	NIST Webbook
ripol	2435.00	NIST Webbook
ripol	2432.00	NIST Webbook
ripol	2380.00	NIST Webbook
ripol	2426.00	NIST Webbook
ripol	2417.00	NIST Webbook
ripol	2419.00	NIST Webbook
ripol	2433.00	NIST Webbook
ripol	2444.00	NIST Webbook
ripol	2420.00	NIST Webbook
ripol	2408.00	NIST Webbook
ripol	2433.00	NIST Webbook
ripol	2412.00	NIST Webbook
ripol	2387.00	NIST Webbook
ripol	2446.00	NIST Webbook
ripol	2380.00	NIST Webbook
ripol	2444.00	NIST Webbook
ripol	2380.00	NIST Webbook
ripol	2420.00	NIST Webbook
ripol	2423.00	NIST Webbook
ripol	2405.00	NIST Webbook
ripol	2420.00	NIST Webbook
ripol	2423.00	NIST Webbook
ripol	2420.00	NIST Webbook
ripol	2436.00	NIST Webbook
ripol	2387.00	NIST Webbook
ripol	2420.00	NIST Webbook
ripol	2401.00	NIST Webbook

ripol	2391.00		NIST Webbook
ripol	2392.00		NIST Webbook
ripol	2400.00		NIST Webbook
ripol	2408.00		NIST Webbook
SS	170.70	J/mol×K	NIST Webbook
SS	167.82	J/mol×K	NIST Webbook
SS	167.59	J/mol×K	NIST Webbook
SS	167.73	J/mol×K	NIST Webbook
SS	165.71	J/mol×K	NIST Webbook
tb	523.00	K	KDB
tb	523.59 ± 0.20	K	NIST Webbook
tb	523.18 ± 0.20	K	NIST Webbook
tb	522.00	K	NIST Webbook
tb	522.20	K	NIST Webbook
tc	755.00	K	Vapor-liquid critical point measurements of fifteen compounds by the pulse-heating method
tc	752.00	K	KDB
tf	395.15	K	Liquid pharmaceuticals formulation by eutectic formation
tf	395.55	K	Aqueous Solubility Prediction Method
tf	395.60	K	KDB
tf	394.70 ± 1.00	K	NIST Webbook
tf	394.95 ± 0.20	K	NIST Webbook
tf	395.60 ± 0.06	K	NIST Webbook
tf	395.55 ± 0.06	K	NIST Webbook
tf	395.57 ± 0.06	K	NIST Webbook
tf	395.62 ± 0.06	K	NIST Webbook
tf	395.58 ± 0.15	K	NIST Webbook
tf	395.00 ± 2.00	K	NIST Webbook
tf	390.00 ± 1.00	K	NIST Webbook
tf	393.65 ± 1.50	K	NIST Webbook
tf	395.60	K	Abraham model correlations for describing the thermodynamic properties of solute transfer into pentyl acetate based on headspace chromatographic and solubility measurements
tf	395.25 ± 0.40	K	NIST Webbook
tf	395.00 ± 2.00	K	NIST Webbook
tf	394.65 ± 0.40	K	NIST Webbook
tf	395.70 ± 0.10	K	NIST Webbook
tf	395.00	K	NIST Webbook
tf	395.15 ± 1.00	K	NIST Webbook

tf	395.53 ± 0.00	K	NIST Webbook
tf	395.15 ± 1.00	K	NIST Webbook
tf	395.50 ± 0.01	K	NIST Webbook
tf	395.00	К	Polar Mixed-Solid Solute Systems in Supercritical Carbon Dioxide: Entrainer Effect and Its Influence on Solubility and Selectivity
tf	395.50	К	Solid-Liquid Equilibria for Benzoic Acid + p-Toluic Acid + Chloroform, Benzoic Acid + p-Toluic Acid + Acetic Acid, and Terephthalic Acid + Isophthalic Acid + N,N-Dimethylformamide
tf	395.30	К	Isothermal Thermogravimetric Study for Determining Sublimation Enthalpies of Some Hydroxyflavones
tf	395.50	К	The use of organic calibration standards in the enthalpy calibration of differential scanning calorimeters
tf	394.65 ± 1.50	K	NIST Webbook
tf	395.37	К	Vapour pressures of selected organic compounds down to 1 mPa, using mass-loss Knudsen effusion method
tt	395.52 ± 0.01	K	NIST Webbook
tt	395.52 ± 0.01	K	NIST Webbook
tt	392.50	К	Solubility Determination of Nicotinamide and Its Application for the Cocrystallization with Benzoic Acid
tt	396.80	К	Solid-Liquid Equilibrium Measurements for Posaconazole and Voriconazole in Several Solvents between T = 278.2 and 323.2 K Using Differential Thermal Analysis/Thermal Gravimetric Analysis
tt	395.63	К	Solubility Data for Roflumilast and Maraviroc in Various Solvents between T = (278.2-323.2) K
tt	395.52 ± 0.01	K	NIST Webbook
tt	395.52 ± 0.01	K	NIST Webbook
VC	0.341	m3/kmol	KDB
ZC	0.2486940		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	202.56	J/mol×K	567.22	Joback Method	
cpg	237.41	J/mol×K	741.85	Joback Method	
cpg	231.43	J/mol×K	706.92	Joback Method	
cpg	224.97	J/mol×K	672.00	Joback Method	
cpg	218.03	J/mol×K	637.07	Joback Method	
cpg	210.57	J/mol×K	602.14	Joback Method	
cpg	193.99	J/mol×K	532.29	Joback Method	
cpl	259.00	J/mol×K	413.00	NIST Webbook	
cps	146.23	J/mol×K	296.29	NIST Webbook	
cps	146.31	J/mol×K	298.15	NIST Webbook	
cps	155.20	J/mol×K	298.00	NIST Webbook	
cps	145.10	J/mol×K	295.10	NIST Webbook	
cps	160.20	J/mol×K	323.00	NIST Webbook	
cps	146.81	J/mol×K	298.15	NIST Webbook	
cps	146.81	J/mol×K	298.15	NIST Webbook	
cps	149.79	J/mol×K	298.15	NIST Webbook	
cps	147.02	J/mol×K	298.15	NIST Webbook	
cps	130.00	J/mol×K	340.00	NIST Webbook	
cps	147.14	J/mol×K	299.99	NIST Webbook	
cps	167.40	J/mol×K	298.15	NIST Webbook	
cps	146.80	J/mol×K	298.15	NIST Webbook	
cps	149.00	J/mol×K	301.00	NIST Webbook	
cps	147.07	J/mol×K	299.62	NIST Webbook	
cps	146.79	J/mol×K	298.15	NIST Webbook	
cps	7.24	J/mol×K	15.95	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	7.83	J/mol×K	17.21	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	9.96	J/mol×K	19.00	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	12.14	J/mol×K	20.93	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	14.48	J/mol×K	22.91	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	16.99	J/mol×K	25.23	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	19.32	J/mol×K	27.83	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	22.55	J/mol×K	30.45	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	25.66	J/mol×K	33.46	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	28.56	J/mol×K	36.82	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	31.83	J/mol×K	40.35	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	34.49	J/mol×K	42.49	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	35.05	J/mol×K	44.38	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	38.04	J/mol×K	46.36	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	39.20	J/mol×K	50.06	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	40.57	J/mol×K	52.26	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	41.94	J/mol×K	54.24	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	43.06	J/mol×K	54.48	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	43.66	J/mol×K	56.71	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	46.10	J/mol×K	59.17	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	45.51	J/mol×K	59.64	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	47.67	J/mol×K	63.04	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	50.03	J/mol×K	67.38	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	52.48	J/mol×K	72.18	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	54.70	J/mol×K	77.01	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	56.45	J/mol×K	81.66	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	58.38	J/mol×K	86.47	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	60.83	J/mol×K	91.42	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	62.66	J/mol×K	96.33	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	64.69	J/mol×K	101.31	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	66.75	J/mol×K	106.39	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	68.59	J/mol×K	111.42	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	70.27	J/mol×K	116.46	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	72.23	J/mol×K	121.51	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	74.39	J/mol×K	126.57	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	76.40	J/mol×K	131.52	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	78.39	J/mol×K	136.54	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	80.14	J/mol×K	141.64	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	81.95	J/mol×K	146.72	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	83.84	J/mol×K	151.83	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	85.94	J/mol×K	156.96	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	87.95	J/mol×K	162.08	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	90.16	J/mol×K	167.21	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	92.08	J/mol×K	172.34	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	93.88	J/mol×K	177.47	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	95.82	J/mol×K	182.61	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	97.76	J/mol×K	187.75	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	100.22	J/mol×K	192.89	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	102.35	J/mol×K	198.03	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	104.33	J/mol×K	203.11	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	106.33	J/mol×K	208.20	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	108.35	J/mol×K	213.34	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	110.69	J/mol×K	218.49	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	113.13	J/mol×K	223.64	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	115.06	J/mol×K	228.80	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	117.66	J/mol×K	233.96	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	120.10	J/mol×K	239.10	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	122.38	J/mol×K	244.26	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	124.56	J/mol×K	249.39	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	127.05	J/mol×K	254.51	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	129.62	J/mol×K	259.67	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	131.98	J/mol×K	264.84	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	134.13	J/mol×K	269.99	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	137.14	J/mol×K	275.13	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	138.73	J/mol×K	280.31	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	141.06	J/mol×K	285.48	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	143.42	J/mol×K	290.65	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	146.34	J/mol×K	296.60	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	148.97	J/mol×K	302.17	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	151.12	J/mol×K	306.93	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	153.27	J/mol×K	312.15	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	155.37	J/mol×K	317.33	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	157.74	J/mol×K	322.49	Design and	
J.F. J			3	construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	160.60	J/mol×K	326.50	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	161.44	J/mol×K	330.48	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	163.80	J/mol×K	335.65	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	165.96	J/mol×K	340.82	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	146.06	J/mol×K	298.15	Reassembling and testing of a high-precision heat capacity drop calorimeter. Heat capacity of some polyphenyls at T = 298.15 K	
cps	2.27	J/mol×K	10.26	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	

cps	3.02	J/mol×K	11.36	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	3.97	J/mol×K	12.61	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	5.14	J/mol×K	13.99	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	6.54	J/mol×K	15.52	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	8.22	J/mol×K	17.23	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	10.17	J/mol×K	19.12	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	12.39	J/mol×K	21.21	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	14.97	J/mol×K	23.54	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	17.79	J/mol×K	26.10	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)

cps	20.88	J/mol×K	28.96	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	24.14	J/mol×K	32.16	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	27.61	J/mol×K	35.67	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	31.21	J/mol×K	39.58	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	34.80	J/mol×K	43.90	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	38.39	J/mol×K	48.73	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	42.02	J/mol×K	54.07	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	45.71	J/mol×K	60.00	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)

cps 49.33 J/molxK 66.57 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (C5H1005) cps 52.81 J/molxK 73.89 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (C5H1005) cps 56.69 J/molxK 82.00 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (C3H1005) cps 60.28 J/molxK 91.01 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (C5H1005) cps 63.46 J/molxK 100.97 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (C5H1005) cps 67.66 J/molxK 111.11 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (C5H1005) cps 77.28 J/molxK 121.20 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (C5H1005) cps 75.08 J/molxK 121.20 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (C5H1005) cps 75.08 J/molxK 131.23 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (C5H1005) cps 75.08 J/molxK 131.23 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (C5H1005) cps 75.08 J/molxK 131.23 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (C5H1005) cps 76.93 J/molxK 141.33 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (C5H1005) cps 78.93 J/molxK 141.33 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (C5H1005)						
heat capacity and standard thermodynamic functions of betaD-(-)-arabinose (CSH10OS)		cps	49.33	J/mol×K	66.57	heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose
heat capacity and standard thermodynamic functions of JetaD-(-)-arabinose (C5H10O5) cps 60.28 J/molxK 91.01 Low-temperature heat capacity and standard thermodynamic functions of JetaD-(-)-arabinose (C5H10O5) cps 63.46 J/molxK 100.97 Low-temperature heat capacity and standard thermodynamic functions of JetaD-(-)-arabinose (C5H10O5) cps 67.66 J/molxK 111.11 Low-temperature heat capacity and standard thermodynamic functions of JetaD-(-)-arabinose (C5H10O5) cps 71.28 J/molxK 121.20 Low-temperature heat capacity and standard thermodynamic functions of JetaD-(-)-arabinose (C5H10O5) cps 75.08 J/molxK 131.23 Low-temperature heat capacity and standard thermodynamic functions of JetaD-(-)-arabinose (C5H10O5) cps 78.93 J/molxK 141.33 Low-temperature heat capacity and standard thermodynamic functions of JetaD-(-)-arabinose (C5H10O5) cps 78.93 J/molxK 141.33 Low-temperature heat capacity and standard thermodynamic functions of JetaD-(-)-arabinose (C5H10O5)	_	cps	52.81	J/mol×K	73.89	heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose
heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (CSH10O5) cps 63.46 J/molxK 100.97 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (CSH10O5) cps 67.66 J/molxK 111.11 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (CSH10O5) cps 71.28 J/molxK 121.20 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (CSH10O5) cps 75.08 J/molxK 131.23 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (CSH10O5) cps 75.08 J/molxK 131.23 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (CSH10O5) cps 78.93 J/molxK 141.33 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (CSH10O5)		cps	56.69	J/mol×K	82.00	heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose
heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 67.66 J/molxK 111.11 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 71.28 J/molxK 121.20 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 75.08 J/molxK 131.23 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 78.93 J/molxK 141.33 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	_	cps	60.28	J/mol×K	91.01	heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose
heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 71.28 J/mol×K 121.20 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 75.08 J/mol×K 131.23 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 78.93 J/mol×K 141.33 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 78.93 J/mol×K 141.33 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose		cps	63.46	J/mol×K	100.97	heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose
heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 75.08 J/mol×K 131.23 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 78.93 J/mol×K 141.33 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose of .betaD-(-)-arabinose		cps	67.66	J/mol×K	111.11	heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose
heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 78.93 J/mol×K 141.33 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose		cps	71.28	J/mol×K	121.20	heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose
heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose		cps	75.08	J/mol×K	131.23	heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose
		cps	78.93	J/mol×K	141.33	heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose

cps	82.66	J/mol×K	151.47	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	86.28	J/mol×K	161.56	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	90.21	J/mol×K	171.65	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	94.38	J/mol×K	181.75	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	98.14	J/mol×K	191.83	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	101.91	J/mol×K	201.92	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	106.35	J/mol×K	212.02	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	110.99	J/mol×K	222.12	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)

cps	115.40	J/mol×K	232.21	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	119.97	J/mol×K	242.21	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	124.67	J/mol×K	252.40	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	128.80	J/mol×K	262.46	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	133.51	J/mol×K	272.51	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	138.20	J/mol×K	282.55	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	141.62	J/mol×K	292.70	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	144.34	J/mol×K	302.71	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)

cps	104.86	J/mol×K	208.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	105.69	J/mol×K	210.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	106.52	J/mol×K	211.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	107.61	J/mol×K	213.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	108.96	J/mol×K	216.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	146.65	J/mol×K	298.15	NIST Webbook	
cps	111.86	J/mol×K	221.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	113.15	J/mol×K	224.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	

cps	114.43	J/mol×K	226.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	114.68	J/mol×K	227.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	116.19	J/mol×K	230.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	117.68	J/mol×K	233.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	119.14	J/mol×K	236.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	120.59	J/mol×K	239.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	122.50	J/mol×K	243.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	

cps	124.38	J/mol×K	247.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	126.69	J/mol×K	252.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	128.74	J/mol×K	256.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	130.54	J/mol×K	260.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	132.10	J/mol×K	264.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	134.09	J/mol×K	268.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	135.19	J/mol×K	271.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	

cps	s 136	6.06	J/mol×K	273.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	s 137	7.59	J/mol×K	276.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	s 138	8.90 .	J/mol×K	279.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	s 140	0.41 .	J/mol×K	283.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	s 142	2.15	J/mol×K	287.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
сря	s 144	4.10	J/mol×K	291.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	s 144	4.31	J/mol×K	292.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	

cps	144.75	J/mol×K	293.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	145.18	J/mol×K	294.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	145.61	J/mol×K	295.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	146.70	J/mol×K	297.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	146.89	J/mol×K	298.15	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	146.92	J/mol×K	298.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	147.13	J/mol×K	298.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	

cps	148.44	J/mol×K	301.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	149.32	J/mol×K	303.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	150.19	J/mol×K	305.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	151.07	J/mol×K	307.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	152.18	J/mol×K	310.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	153.96	J/mol×K	314.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	155.75	J/mol×K	318.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	

cps	157.11	J/mol×K	321.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	2.28	J/mol×K	10.24	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	2.58	J/mol×K	10.71	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	2.90	J/mol×K	11.18	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	3.26	J/mol×K	11.68	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	3.65	J/mol×K	12.20	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	4.07	J/mol×K	12.74	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	4.54	J/mol×K	13.30	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	5.05	J/mol×K	13.89	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	5.60	J/mol×K	14.50	Low-temperature heat capacity measurements on insulating powders sealed under pressure	

cps	6.19	J/mol×K	15.14	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	6.66	J/mol×K	15.64	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	8.09	J/mol×K	17.10	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	9.72	J/mol×K	18.69	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	11.56	J/mol×K	20.41	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	13.61	J/mol×K	22.32	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	15.91	J/mol×K	24.40	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	18.40	J/mol×K	26.66	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	20.97	J/mol×K	29.13	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	23.77	J/mol×K	31.84	Low-temperature heat capacity measurements on insulating powders sealed under pressure	

cps	26.64	J/mol×K	34.80	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	29.60	J/mol×K	38.03	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	32.79	J/mol×K	41.56	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	35.88	J/mol×K	45.42	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	39.11	J/mol×K	49.63	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	42.18	J/mol×K	54.24	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	45.06	J/mol×K	59.28	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	47.92	J/mol×K	64.78	Low-temperature heat capacity measurements on insulating powders sealed under pressure	_
cps	50.65	J/mol×K	70.79	Low-temperature heat capacity measurements on insulating powders sealed under pressure	_
cps	53.75	J/mol×K	77.36	Low-temperature heat capacity measurements on insulating powders sealed under pressure	

cps	57.18	J/mol×K	84.51	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	61.03	J/mol×K	92.38	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	64.26	J/mol×K	100.95	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	67.64	J/mol×K	110.98	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	71.22	J/mol×K	121.09	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	75.19	J/mol×K	131.21	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	78.86	J/mol×K	141.28	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	82.29	J/mol×K	151.34	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	85.76	J/mol×K	161.49	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	90.18	J/mol×K	171.59	Low-temperature heat capacity measurements on insulating powders sealed under pressure	

cps	95.02	J/mol×K	181.67	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	98.70	J/mol×K	191.74	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	102.27	J/mol×K	201.82	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	106.37	J/mol×K	211.92	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	112.07	J/mol×K	222.00	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	117.31	J/mol×K	232.09	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	119.60	J/mol×K	242.17	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	124.22	J/mol×K	252.25	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	128.72	J/mol×K	262.35	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	133.00	J/mol×K	272.46	Low-temperature heat capacity measurements on insulating powders sealed under pressure	

cps	137.80	J/mol×K	282.54	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	141.72	J/mol×K	292.59	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	146.37	J/mol×K	302.66	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	2.29	J/mol×K	10.30	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	2.68	J/mol×K	10.90	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	3.09	J/mol×K	11.50	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	3.53	J/mol×K	12.10	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	4.00	J/mol×K	12.71	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	4.50	J/mol×K	13.33	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	5.02	J/mol×K	13.94	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	5.57	J/mol×K	14.56	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps 6.13 J/molxK 15.17 Thermodynamic Properties of [Commi]NTI2] in the Condensed State cps 6.82 J/molxK 15.90 Thermodynamic Properties of [Commi]NTI2] in the Condensed State cps 7.64 J/molxK 16.73 Thermodynamic Properties of [Commi]NTI2] in the Condensed State cps 8.47 J/molxK 17.56 Thermodynamic Properties of [Commi]NTI2] in the Condensed State cps 9.33 J/molxK 18.39 Thermodynamic Properties of [Commi]NTI2] in the Condensed State cps 10.21 J/molxK 19.22 Thermodynamic Properties of [Commi]NTI2] in the Condensed State cps 11.09 J/molxK 20.06 Thermodynamic Properties of [Commi]NTI2] in the Condensed State cps 12.34 J/molxK 21.19 Thermodynamic Properties of [Commi]NTI2] in the Condensed State cps 13.90 J/molxK 26.62 Thermodynamic Properties of [Commi]NTI2] in the Condensed State cps 15.49 J/molxK 24.04 Thermodynamic Properties of [Commi]NTI2] in the Condensed State cps 17.05 J/molxK 25.46 Thermodynamic Pr						
Properties of Clamming Clam	cps	6.13	J/mol×K	15.17	Properties of [C6mim][NTf2] in the Condensed	
Properties of Comm NTI2 in the Condensed State	cps	6.82	J/mol×K	15.90	Properties of [C6mim][NTf2] in the Condensed	
Properties of	cps	7.64	J/mol×K	16.73	Properties of [C6mim][NTf2] in the Condensed	
Properties of C6mim NTf2 in the Condensed State	cps	8.47	J/mol×K	17.56	Properties of [C6mim][NTf2] in the Condensed	
Properties of C6mim NTf2 in the Condensed State	cps	9.33	J/mol×K	18.39	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed State	cps	10.21	J/mol×K	19.22	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim] NTf2 in the Condensed State	cps	11.09	J/mol×K	20.06	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed State Cps 15.49 J/molxK 24.04 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State Cps 17.05 J/molxK 25.46 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State Cps 18.61 J/molxK 26.89 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State Cps 18.61 J/molxK 26.89 Thermodynamic Properties of [C6mim][NTf2] in the Condensed	cps	12.34	J/mol×K	21.19	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed State cps 17.05 J/mol×K 25.46 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 18.61 J/mol×K 26.89 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	cps	13.90	J/mol×K	22.62	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed State cps 18.61 J/mol×K 26.89 Thermodynamic Properties of [C6mim][NTf2] in the Condensed	cps	15.49	J/mol×K	24.04	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed	cps	17.05	J/mol×K	25.46	Properties of [C6mim][NTf2] in the Condensed	
	cps	18.61	J/mol×K	26.89	Properties of [C6mim][NTf2] in the Condensed	

4						
	cps	20.19	J/mol×K	28.33	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	21.74	J/mol×K	29.77	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	23.43	J/mol×K	31.37	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	25.21	J/mol×K	33.11	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	26.94	J/mol×K	34.87	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	28.60	J/mol×K	36.62	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	30.21	J/mol×K	38.37	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	31.74	J/mol×K	40.13	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	33.33	J/mol×K	41.98	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	34.99	J/mol×K	43.94	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	36.51	J/mol×K	45.90	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	38.01	J/mol×K	47.87	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

4						
	cps	39.43	J/mol×K	49.84	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	40.77	J/mol×K	51.81	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	42.06	J/mol×K	53.78	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	43.33	J/mol×K	55.75	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	44.56	J/mol×K	57.72	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	45.75	J/mol×K	59.69	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	46.91	J/mol×K	61.67	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	48.01	J/mol×K	63.65	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	49.04	J/mol×K	65.63	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	50.10	J/mol×K	67.61	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	51.07	J/mol×K	69.60	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	52.00	J/mol×K	71.59	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

4						
	cps	52.93	J/mol×K	73.59	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	53.90	J/mol×K	75.59	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	54.88	J/mol×K	77.59	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	56.16	J/mol×K	80.71	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	56.92	J/mol×K	82.55	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	57.66	J/mol×K	84.38	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	58.43	J/mol×K	86.22	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	59.17	J/mol×K	88.06	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	59.92	J/mol×K	89.91	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	60.64	J/mol×K	91.62	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	60.69	J/mol×K	91.76	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	61.50	J/mol×K	93.75	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

1						
	cps	62.21	J/mol×K	95.60	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	62.98	J/mol×K	97.45	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	63.71	J/mol×K	99.31	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	64.44	J/mol×K	101.17	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	65.18	J/mol×K	103.02	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	65.85	J/mol×K	104.89	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	66.57	J/mol×K	106.75	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	67.29	J/mol×K	108.62	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	68.01	J/mol×K	110.49	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	68.69	J/mol×K	112.36	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	69.38	J/mol×K	114.23	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	70.13	J/mol×K	116.10	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps 70.81 J/molxK 117.97 Thermodynamic Properties of (CommigNTI2) in the Condensed State cps 71.50 J/molxK 119.85 Thermodynamic Properties of (CommigNTI2) in the Condensed State cps 72.20 J/molxK 121.73 Thermodynamic Properties of (CommigNTI2) in the Condensed State cps 72.89 J/molxK 123.61 Thermodynamic Properties of (CommigNTI2) in the Condensed State cps 73.60 J/molxK 125.49 Thermodynamic Properties of (CommigNTI2) in the Condensed State cps 74.30 J/molxK 127.38 Thermodynamic Properties of (CommigNTI2) in the Condensed State cps 75.00 J/molxK 129.26 Thermodynamic Properties of (CommigNTI2) in the Condensed State cps 75.72 J/molxK 131.15 Thermodynamic Properties of (CommigNTI2) in the Condensed State cps 76.42 J/molxK 134.92 Thermodynamic Properties of (CommigNTI2) in the Condensed State cps 77.12 J/molxK 134.92 Thermodynamic Properties of (CommigNTI2) in the Condensed State cps 77.81 J/molxK 136.81
Properties of Closmin NT/2 in the Condensed State
Cps
Properties of Closmin NT12 in the Condensed State
Properties of C6mim NTf2 in the Condensed State
Properties of C6mim] NT/2 in the Condensed State
Properties of [C6mim][NTf2] in the Condensed State
Properties of C6mim [NTf2] in the Condensed State
Properties of [C6mim][NTf2] in the Condensed State Cps 77.12 J/molxK 134.92 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State Cps 77.81 J/molxK 136.81 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State Cps 78.54 J/molxK 138.70 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State Cps 78.54 J/molxK 138.70 Thermodynamic Properties of [C6mim][NTf2] in the Condensed
Properties of [C6mim][NTf2] in the Condensed State cps 77.81 J/mol×K 136.81 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 78.54 J/mol×K 138.70 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
Properties of [C6mim][NTf2] in the Condensed State cps 78.54 J/mol×K 138.70 Thermodynamic Properties of [C6mim][NTf2] in the Condensed
Properties of [C6mim][NTf2] in the Condensed

cps	79.26	J/mol×K	140.60	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	79.99	J/mol×K	142.49	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	80.73	J/mol×K	144.38	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	81.45	J/mol×K	146.27	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	82.16	J/mol×K	148.17	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	82.89	J/mol×K	150.07	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	83.64	J/mol×K	151.98	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	84.39	J/mol×K	153.88	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	85.06	J/mol×K	155.78	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	85.81	J/mol×K	157.69	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	86.55	J/mol×K	159.60	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	87.30	J/mol×K	161.50	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cl	ps	88.05	J/mol×K	163.41	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cl	ps	88.80	J/mol×K	165.32	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
c	ps	89.55	J/mol×K	167.23	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cp	ps	90.30	J/mol×K	169.14	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
c	ps	91.04	J/mol×K	171.05	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
Cļ	ps	91.79	J/mol×K	172.96	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cļ	ps	92.62	J/mol×K	174.88	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cp	ps	93.37	J/mol×K	176.79	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
c	ps	94.12	J/mol×K	178.70	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cp	ps	94.95	J/mol×K	180.62	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
c	ps	95.78	J/mol×K	182.54	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
Cļ	ps	96.53	J/mol×K	184.47	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

4						
	cps	97.28	J/mol×K	186.39	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	98.11	J/mol×K	188.31	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	98.94	J/mol×K	190.22	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	99.77	J/mol×K	192.14	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	100.50	J/mol×K	194.07	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	101.40	J/mol×K	195.99	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	102.20	J/mol×K	197.92	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	103.00	J/mol×K	199.85	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	103.80	J/mol×K	201.78	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	104.60	J/mol×K	203.71	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	105.40	J/mol×K	205.64	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	106.30	J/mol×K	207.57	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

4						
	cps	107.10	J/mol×K	209.50	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	107.90	J/mol×K	211.44	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	108.70	J/mol×K	213.37	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	109.50	J/mol×K	215.31	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	110.30	J/mol×K	217.24	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	111.20	J/mol×K	219.18	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	112.00	J/mol×K	221.12	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	112.70	J/mol×K	222.63	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	112.80	J/mol×K	223.05	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	113.70	J/mol×K	224.76	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	113.70	J/mol×K	224.99	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	114.40	J/mol×K	226.70	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

Cps
Properties of Clamming Clam
Properties of ComminkTri2 in the Condensed State
Properties of Closmin NT12 in the Condensed State
Properties of C6mim NTf2 in the Condensed State
Properties of C6mim] NTf2 in the Condensed State
Properties of [C6mim][NTf2] in the Condensed State
cps 120.50 J/molxK 240.23 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 121.30 J/molxK 242.16 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 121.30 J/molxK 242.16 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 122.20 J/molxK 244.10 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 123.10 J/molxK 246.04 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
Properties of [C6mim][NTf2] in the Condensed State Cps 121.30 J/molxK 242.16 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State Cps 122.20 J/molxK 244.10 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State Cps 123.10 J/molxK 246.04 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State Cps 123.10 J/molxK 246.04 Thermodynamic Properties of [C6mim][NTf2] in the Condensed
Properties of [C6mim][NTf2] in the Condensed State cps 122.20 J/mol×K 244.10 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 123.10 J/mol×K 246.04 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
Properties of [C6mim][NTf2] in the Condensed State cps 123.10 J/mol×K 246.04 Thermodynamic Properties of [C6mim][NTf2] in the Condensed
Properties of [C6mim][NTf2] in the Condensed

Cps						
Properties of Closmin NT/2 in the Condensed State	cps	123.90	J/mol×K	247.97	Properties of [C6mim][NTf2] in the Condensed	
Cps	cps	124.80	J/mol×K	249.91	Properties of [C6mim][NTf2] in the Condensed	
Properties of Closmin NT12 in the Condensed State	cps	125.70	J/mol×K	251.84	Properties of [C6mim][NTf2] in the Condensed	
Properties of C6mim NTf2 in the Condensed State	cps	126.50	J/mol×K	253.79	Properties of [C6mim][NTf2] in the Condensed	
Cps 129.30 J/molxK 259.60 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	cps	127.50	J/mol×K	255.73	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed State	cps	128.30	J/mol×K	257.66	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed State	cps	129.30	J/mol×K	259.60	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed State Cps 131.90 J/molxK 265.41 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State Cps 132.80 J/molxK 267.35 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State Cps 133.70 J/molxK 269.28 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	cps	130.10	J/mol×K	261.54	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed State cps 132.80 J/mol×K 267.35 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 133.70 J/mol×K 269.28 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	cps	131.00	J/mol×K	263.47	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed State cps 133.70 J/mol×K 269.28 Thermodynamic Properties of [C6mim][NTf2] in the Condensed	cps	131.90	J/mol×K	265.41	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed	cps	132.80	J/mol×K	267.35	Properties of [C6mim][NTf2] in the Condensed	
	cps	133.70	J/mol×K	269.28	Properties of [C6mim][NTf2] in the Condensed	

1						
	cps	134.50	J/mol×K	271.22	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	135.40	J/mol×K	273.16	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	136.30	J/mol×K	275.10	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	137.20	J/mol×K	277.03	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	138.00	J/mol×K	278.97	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	138.90	J/mol×K	280.91	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	139.80	J/mol×K	282.84	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	140.70	J/mol×K	284.79	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	141.60	J/mol×K	286.73	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	142.50	J/mol×K	288.67	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	143.40	J/mol×K	290.61	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	144.30	J/mol×K	292.55	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	145.20	J/mol×K	294.49	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	146.10	J/mol×K	296.43	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	146.90	J/mol×K	298.37	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	147.80	J/mol×K	300.31	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	148.70	J/mol×K	302.25	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	149.70	J/mol×K	304.19	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	150.60	J/mol×K	306.13	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	151.40	J/mol×K	308.07	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	152.30	J/mol×K	310.01	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	153.20	J/mol×K	311.95	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	154.20	J/mol×K	313.89	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	155.10	J/mol×K	315.83	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State

1						
	cps	155.90	J/mol×K	317.78	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	156.70	J/mol×K	319.73	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	157.60	J/mol×K	321.67	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	158.60	J/mol×K	323.61	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	159.50	J/mol×K	325.56	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	160.30	J/mol×K	327.50	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	161.20	J/mol×K	329.44	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	162.00	J/mol×K	331.39	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	162.90	J/mol×K	333.34	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	163.70	J/mol×K	335.28	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	164.50	J/mol×K	337.23	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	165.50	J/mol×K	339.17	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

1						
	cps	166.30	J/mol×K	341.12	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	167.30	J/mol×K	343.06	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	168.10	J/mol×K	345.01	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	169.00	J/mol×K	346.95	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	169.90	J/mol×K	348.90	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	170.80	J/mol×K	350.86	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	171.60	J/mol×K	352.80	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	172.40	J/mol×K	354.75	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	173.30	J/mol×K	356.69	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	174.20	J/mol×K	358.64	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	175.10	J/mol×K	360.58	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	175.90	J/mol×K	362.53	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	176.90	J/mol×K	364.49	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	177.80	J/mol×K	366.44	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	178.60	J/mol×K	368.39	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	147.78	J/mol×K	300.00	NIST Webbook	
cps	147.03	J/mol×K	298.90	NIST Webbook	
cps	110.02	J/mol×K	218.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
dvisc	0.0003697	Paxs	456.80	Joback Method	
dvisc	0.0013384	Paxs	381.31	Joback Method	
dvisc	0.0031482	Paxs	343.57	Joback Method	
dvisc	0.0002251	Paxs	494.54	Joback Method	
dvisc	0.0091461	Paxs	305.82	Joback Method	
dvisc	0.0001471	Paxs	532.29	Joback Method	
dvisc	0.0006638	Paxs	419.06	Joback Method	
hfust	17.32	kJ/mol	395.00	NIST Webbook	
hfust	16.99	kJ/mol	396.90	NIST Webbook	
hfust	18.00	kJ/mol	395.52	NIST Webbook	
hfust	17.30	kJ/mol	394.40	NIST Webbook	
hfust	17.40	kJ/mol	395.00	NIST Webbook	
hfust	17.10	kJ/mol	395.40	NIST Webbook	
hfust	16.23	kJ/mol	395.00	NIST Webbook	
hfust	18.01	kJ/mol	395.52	NIST Webbook	
hfust	17.99	kJ/mol	395.50	NIST Webbook	
hsubt	90.00 ± 0.50	kJ/mol	308.00	NIST Webbook	
hsubt	90.90 ± 2.00	kJ/mol	375.00	NIST Webbook	
hsubt	89.23	kJ/mol	298.15	NIST Webbook	
hsubt	84.50 ± 0.50	kJ/mol	385.50	NIST Webbook	
hsubt	90.50 ± 0.30	kJ/mol	358.50	NIST Webbook	
hsubt	86.70	kJ/mol	328.00	NIST Webbook	
hsubt	88.70 ± 0.90	kJ/mol	310.50	NIST Webbook	
hsubt	87.50 ± 0.30	kJ/mol	335.00	NIST Webbook	
hsubt	90.80 ± 0.60	kJ/mol	306.00	NIST Webbook	
hsubt	95.10 ± 1.80	kJ/mol	294.00	NIST Webbook	

hsubt	87.80	kJ/mol	398.00	NIST Webbook	
hsubt	91.00 ± 2.00	kJ/mol	303.00	NIST Webbook	
hsubt	89.50 ± 0.05	kJ/mol	353.50	NIST Webbook	
hsubt	84.10 ± 0.80	kJ/mol	318.00	NIST Webbook	
hsubt	85.00 ± 2.00	kJ/mol	369.50	NIST Webbook	
hsubt	88.30 ± 2.90	kJ/mol	302.00	NIST Webbook	
hsubt	88.50 ± 1.60	kJ/mol	305.50	NIST Webbook	
hsubt	92.90 ± 0.20	kJ/mol	295.50	NIST Webbook	
hsubt	88.10 ± 0.20	kJ/mol	302.00	NIST Webbook	
hsubt	89.00 ± 0.40	kJ/mol	360.50	NIST Webbook	
hsubt	89.30 ± 0.40	kJ/mol	360.50	NIST Webbook	
hsubt	90.00 ± 0.30	kJ/mol	300.50	NIST Webbook	
hsubt	86.60 ± 1.30	kJ/mol	302.50	NIST Webbook	
hsubt	89.10	kJ/mol	314.00	NIST Webbook	
hsubt	90.40 ± 0.80	kJ/mol	358.00	NIST Webbook	
hsubt	86.60 ± 1.70	kJ/mol	302.50	NIST Webbook	
hsubt	88.90 ± 0.50	kJ/mol	363.00	NIST Webbook	
hsubt	90.90	kJ/mol	299.00	NIST Webbook	
hsubt	84.20 ± 0.80	kJ/mol	318.00	NIST Webbook	
hsubt	89.10 ± 0.20	kJ/mol	345.00	NIST Webbook	
hsubt	85.80	kJ/mol	361.00	NIST Webbook	
hsubt	93.00 ± 4.00	kJ/mol	312.50	NIST Webbook	
hvapt	50.63	kJ/mol	523.00	KDB	
	90.80	kJ/mol	308.21		
hvapt	90.00	KJ/IIIOI	300.21	Enthalpy of sublimation of natural aromatic amino acids determined by Knudsen's effusion mass spectrometric method	
hvapt	87.30	kJ/mol	357.00	Sublimation and thermal decomposition of ammonia borane: Competitive processes controlled by pressure	
hvapt	90.50	kJ/mol	331.00	Studying the sublimation thermodynamics of ethionamide and pyridine carbothioamide isomers by transpiration method	
hvapt	87.45	kJ/mol	335.00	NIST Webbook	
hvapt	63.30 ± 0.60	kJ/mol	408.50	NIST Webbook	
	66.30	kJ/mol	464.00	NIST Webbook	

hvapt	67.80	kJ/mol	398.00	NIST Webbook	
hvapt	65.40	kJ/mol	428.00	NIST Webbook	
hvapt	67.70	kJ/mol	460.50	NIST Webbook	
hvapt	90.20	kJ/mol	348.00	Evaluation of sublimation enthalpy by thermogravimetry: Analysis of the diffusion effects in the case of methyl and phenyl substituted hydantoins	
psub	1.55e-04	kPa	301.04	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	4.36e-04	kPa	309.63	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-o Data evaluation	ne.
psub	7.54e-04	kPa	314.59	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-o Data evaluation	ne.
psub	7.38e-04	kPa	314.40	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-o Data evaluation	ne.
psub	1.27e-03	kPa	319.48	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-o Data evaluation	ne.
psub	2.12e-03	kPa	324.39	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-o Data evaluation	ne.
psub	3.43e-03	kPa	329.20	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-o Data evaluation	ne.

psub	5.54e-03	kPa	334.07	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	8.73e-03	kPa	338.98	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	1.34e-04	kPa	299.33	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.31e-04	kPa	299.33	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.62e-04	kPa	301.04	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.60e-04	kPa	301.04	The design, construction, and testing of a new Knudsen effusion apparatus
psub	2.50e-04	kPa	304.75	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	2.03e-04	kPa	303.16	The design, construction, and testing of a new Knudsen effusion apparatus
psub	2.01e-04	kPa	303.16	The design, construction, and testing of a new Knudsen effusion apparatus
psub	2.10e-04	kPa	303.16	The design, construction, and testing of a new Knudsen effusion apparatus
psub	2.65e-04	kPa	305.24	The design, construction, and testing of a new Knudsen effusion apparatus

psub	2.61e-04	kPa	305.24	The design, construction, and testing of a new Knudsen effusion apparatus
psub	2.71e-04	kPa	305.24	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.42e-04	kPa	299.96	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	3.26e-04	kPa	307.13	The design, construction, and testing of a new Knudsen effusion apparatus
psub	3.23e-04	kPa	307.13	The design, construction, and testing of a new Knudsen effusion apparatus
psub	4.14e-04	kPa	309.25	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.43e-04	kPa	300.03	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	4.20e-04	kPa	309.25	The design, construction, and testing of a new Knudsen effusion apparatus
psub	5.25e-04	kPa	311.30	The design, construction, and testing of a new Knudsen effusion apparatus
psub	5.12e-04	kPa	311.30	The design, construction, and testing of a new Knudsen effusion apparatus
psub	5.24e-04	kPa	311.30	The design, construction, and testing of a new Knudsen effusion apparatus

psub	6.43e-04	kPa	313.20	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	6.22e-04	kPa	313.20	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	6.47e-04	kPa	313.20	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	8.15e-04	kPa	315.27	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	7.99e-04	kPa	315.27	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	8.30e-04	kPa	315.27	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	1.05e-03	kPa	317.32	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	1.02e-03	kPa	317.32	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	1.01e-03	kPa	317.32	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	2.85e-04	kPa	307.15	Sublimation thermodynamics of four fluoroquinolone antimicrobial compounds	
psub	1.67e-03	kPa	323.15	Sublimation thermodynamics of four fluoroquinolone antimicrobial compounds	

psub	7.51e-03	kPa	338.15	Sublimation thermodynamics of four fluoroquinolone antimicrobial compounds
psub	0.03	kPa	354.15	Sublimation thermodynamics of four fluoroquinolone antimicrobial compounds
psub	1.02e-03	kPa	318.02	The thermodynamic properties of 1-bromoadamantane in the gaseous state
psub	1.69e-03	kPa	322.70	The thermodynamic properties of 1-bromoadamantane in the gaseous state
psub	1.74e-03	kPa	322.99	The thermodynamic properties of 1-bromoadamantane in the gaseous state
psub	2.89e-03	kPa	327.90	The thermodynamic properties of 1-bromoadamantane in the gaseous state
psub	4.57e-03	kPa	332.60	The thermodynamic properties of 1-bromoadamantane in the gaseous state
psub	2.05e-04	kPa	302.99	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states
psub	3.78e-04	kPa	308.00	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states
psub	6.43e-04	kPa	312.86	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states

psub	6.61e-04	kPa	313.19	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.07e-03	kPa	317.89	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.10e-03	kPa	317.91	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.13e-03	kPa	318.02	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.10e-03	kPa	318.02	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.83e-03	kPa	322.70	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.82e-03	kPa	322.95	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	_
psub	1.88e-03	kPa	322.99	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	_
psub	2.98e-03	kPa	327.63	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	3.10e-03	kPa	327.88	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	-

psub	3.13e-03	kPa	327.90	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states
psub	6.93e-03	kPa	336.46	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	4.82e-03	kPa	332.80	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states
psub	4.89e-03	kPa	332.85	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states
psub	7.79e-03	kPa	337.71	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states
psub	9.50e-04	kPa	316.30	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods
psub	1.47e-03	kPa	320.40	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods
psub	4.36e-03	kPa	331.62	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation

psub	3.02e-03	kPa	327.40	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	4.95e-03	kPa	332.40	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	8.09e-03	kPa	337.40	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	0.01	kPa	342.30	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	0.02	kPa	347.30	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	0.03	kPa	352.40	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	0.05	kPa	357.40	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	

psub	0.07	kPa	362.50	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods
psub	0.11	kPa	367.50	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods
psub	2.68e-03	kPa	326.76	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	1.64e-03	kPa	321.91	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	9.69e-04	kPa	316.91	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	5.73e-04	kPa	312.08	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	3.35e-04	kPa	307.27	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	1.93e-04	kPa	302.51	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation

psub	1.08e-04	kPa	297.67	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation	
psub	4.08e-04	kPa	309.25	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	2.14e-03	kPa	324.00	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	3.32e-04	kPa	307.13	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	4.95e-03	kPa	332.60	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
rhol	1075.00	kg/m3	403.00	KDB	
sfust	44.00	J/mol×K	395.00	NIST Webbook	
sfust	41.10	J/mol×K	395.00	NIST Webbook	
sfust	45.51	J/mol×K	395.52	NIST Webbook	
sfust	45.52	J/mol×K	395.52	NIST Webbook	
sfust	43.80	J/mol×K	395.00	NIST Webbook	
ssubt	299.30	J/mol×K	298.15	NIST Webbook	
svapt	261.00	J/mol×K	335.00	NIST Webbook	
tcondl	0.14	W/m×K	406.80	Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K and 465 K	
tcondl	0.14	W/m×K	424.40	Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K and 465 K	

tcondl	0.13	W/m×K	444.90	Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K and 465 K
tcondl	0.13	W/m×K	465.10	Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K and 465 K

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbrp	406.20	K	1.30	NIST Webbook
tbrp	406.00	K	1.30	NIST Webbook

Correlations

Information	Value
Property code	pvap

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.50844e+01
Coeff. B	-4.20667e+03
Coeff. C	-1.20264e+02
Temperature range (K), min.	395.52
Temperature range (K), max.	550.71

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	-7.46843e+01
Coeff. B	-4.45389e+03
Coeff. C	1.47811e+01
Coeff. D	-1.71981e-05
Temperature range (K), min.	395.52
Temperature range (K), max.	560.15

Sources

N.Wethylbenzoic Acid, o-Methylbenzoic Acid, p-Hydroxybenzoic Acid, and o-Nitrobenzoic Acid in 1-Octanol:

https://www.doi.org/10.1016/j.jct.2011.06.010 Reassembling and testing of a high-precision heat capacity drop Mashwete Meteadcapacity of some http://link.springer.com/article/10.1007/BF02311772 polyphenyls at T = 298.15 K: Experimental and computational https://www.doi.org/10.1016/j.jct.2018.01.022 thermochemical study of two dabaskeMettzodes: https://en.wikipedia.org/wiki/Joback_method The tributy family independent of the position https://www.doi.org/10.1016/j.fluid.2014.07.038 https://www.doi.org/10.1021/je060408x နှစ်မှုနှားမြုံမျှာ ရုံး Benzoic Acid in Mixed Solvents: Solid-Liquid Phase Equilibria of the https://www.doi.org/10.1021/acs.jced.8b00170 Ternary System (2-Naphthaldehyde +
\$4\text{Naphthaldehyde +}
\$4\text{N Supercritical Carbon Dioxide: Entrainer Supercritical Carbon Dioxide: Entrain Entitlitying the Marketter Solvent Effect of Gourglation, and Solvent Effect of Releast Solvent Effect of Solvent Effect of 2 1947 in West Habethy and no block of in 12 https://www.doi.org/10.1021/acs.jced.8b01265 https://www.doi.org/10.1021/acs.jced.8b01226 https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure Pressidents: Solubility of paroxetine hydrochloride https://www.doi.org/10.1016/j.jct.2004.12.006 hemi-hydrate in (water + acetone): Sublimation and thermal https://www.doi.org/10.1016/j.tca.2015.08.021 decomposition of ammonia borane: https://www.doi.org/10.1021/je900999b Conquitaidhano classe Caranityiréd by Berseite Acid: Low temperature heat capacities and https://www.doi.org/10.1016/j.tca.2008.12.029 standard molar enthalpy of formation https://www.doi.org/10.1016/j.jct.2015.08.031
standard thermodynamic functions of Selectify Massimesse (CSHdOO5):
Thermodynamic Modeling of Solid-bidy Massime https://www.doi.org/10.1016/j.jct.2015.08.031 PROFESTATION OF THE STREET OF THE PROFESTATION OF THE PROFESTATION

compounds down to 1 mPa, using http://webbook.nist.gov/cgi/cbook.cgi?ID=C65850&Units=SI Nasts Most pre fudsen effusion method: https://www.doi.org/10.1016/j.jct.2019.03.015 Solubility and vapor pressure data of bioactive
Sqliseliguidingwilloguernand, phannadiazotteryil)www.doi.org/10.1016/j.jct.2016.06.011
phannadian figure the ternary
(291apressidence to the square between significant to the solubility of benzoic acid derivatives in Sqlubility Determination of https://www.doi.org/10.1016/j.fluid.2006.10.01
https://www.doi.org/10.1016/j.fluid.2006.10.01
https://www.doi.org/10.1021/acs.jced.8b00560 https://www.doi.org/10.1016/j.fluid.2006.06.011 https://www.doi.org/10.1016/j.fluid.2006.10.014 https://www.doi.org/10.1021/acs.jced.8b00560 https://www.doi.org/10.1021/acs.jced.8b00560
Nicotinamide and Its Application for the blessystempatiand for the blessystem https://www.doi.org/10.1016/j.fluid.2012.11.023 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=955 Thermodynamic properties of 2-adamantanone in the condensed and laetherase Tiles massimation Enthalpies Messine Properties of 2-adamantanone in the condensed and laetherase Tiles massimation Enthalpies Messine Properties of Jacobson and Calculation Splute Properties of Calculation https://www.doi.org/10.1016/j.tca.2006.08.018 https://www.doi.org/10.1021/acs.jced.7b01034 https://www.doi.org/10.1021/je100658y https://www.doi.org/10.1016/j.fluid.2010.06.021 Thermodynamic Analysis of Bioactive

https://www.doi.org/10.1021/je7004038

https://www.doi.org/10.1021/je7004038

https://www.doi.org/10.1021/je500775r

https://www.doi.org/10.1021/je500775r

https://www.doi.org/10.1021/je500775r

https://www.doi.org/10.1021/je500775r

https://www.doi.org/10.1021/je500775r

https://www.doi.org/10.1021/je100675r

https://www.doi.org/10.1021/je100675r

https://www.doi.org/10.1021/je100675r

https://www.doi.org/10.1021/je100675r

https://www.doi.org/10.1021/je100675r

https://www.doi.org/10.1021/je200717 https://www.doi.org/10.1021/acs.jced.9b00717 Thermodynamic Analysis of Bioactive Enthalpsyaein-Miparinoral and Thermodynamic Analysis of Bioactive Enthalpsyaein-Miparinoral and Miparinoral and Miparinora https://www.doi.org/10.1021/acs.jced.8b00333 pfternewikmulsen effseigenapparatus: Low-temperature heat capacity https://www.doi.org/10.1016/j.jct.2019.05.009 measurements on insulating powders
Searaginately designings: Evaluation of thermochemical properties with
Semples these legislines by the semination of the https://www.doi.org/10.1016/j.fluid.2012.06.010 Solvents: Solubility Measurement and Modeling https://www.doi.org/10.1021/acs.jced.8b00192 of 1-(3-nitrophenyl)Ethanone and in the properties of 1-(3-nitrophenyl)Ethanone and 1-(3-nitrophenyl)Eth https://www.doi.org/10.1021/acs.jced.8b00416 http://pubs.acs.org/doi/abs/10.1021/ci990307l Abraham model correlations for https://www.doi.org/10.1016/j.jct.2018.05.003 describing the thermodynamic bolybidites of Benzeig Anist and Assiring in Education Selection in the Selection of Selection of Selection and Assiring Selection in the Selection of Selection and Assiring Selection of Selectio (water + n-dodecane) solutions at T = **State** had **199** new Acid in Aqueous https://www.doi.org/10.1021/je800507m Solutions Containing Ethanol or Republities of benzoic acid in binary https://www.doi.org/10.1016/j.jct.2014.12.003 (benzy) alcohol + benzaldehyde)

Spranedynamic Properties of
[C6mim][NTf2] in the Condensed State:
Measurement and Thermodynamic https://www.doi.org/10.1021/je060094d Modeling of the Solubility of https://www.doi.org/10.1021/acs.jced.6b00163 https://www.doi.org/10.1021/acs.jced.6b00464 pará-tert-Butylbenzoic Acid in Acetic

https://www.doi.org/10.1016/j.jct.2013.11.038

Vapour pressures of selected organic

Acid/Methanol + Water and Acetic Acid + para-tert-Butyltoluene Binary Systems at Various Temperatures: Thermodynamics of molecular solids in https://www.doi.org/10.1016/j.jct.2011.12.015

organic solvents: The solubilities of benzene https://www.doi.org/10.1016/j.jct.2005.07.007 polycarboxylic acids in water: Thermodynamic Properties from https://www.doi.org/10.1021/acs.jced.8b01075 Calorimetry and Density Functional Palebylian Mase memoral dimetric Theory of Manager Madelian of Ranzeic Agus of https://www.doi.org/10.1021/acs.jced.8b00025

Mixtures: Thermodynamic Modeling and https://www.doi.org/10.1021/acs.jced.9b00620 Solubility Measurement of Cetirizine Solubility Measurement of Cetifizine Registeriorise in Pure selection in the selection in the selection in the selection in the remaining selection in the selection i https://www.doi.org/10.1016/j.jct.2006.03.016 https://www.doi.org/10.1016/j.fluid.2014.09.013

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751500/

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=955

Enthalpies of sublimation of L-methionine and DL-methionine:
Relubility Determinations of
Thermodynamic Modeling of
2-Mercaptobenzimidazole in 12 Solvents from T = 278.15 K to T =318.15 K:

https://www.doi.org/10.1016/j.jct.2019.04.006 https://www.doi.org/10.1021/acs.jced.9b00190

Legena

Acentric Factor af: affp: Proton affinity

aigt: Autoignition Temperature

basg: Gas basicity

chl: Standard liquid enthalpy of combustion chs: Standard solid enthalpy of combustion

Ideal gas heat capacity cpg: Liquid phase heat capacity cpl: Solid phase heat capacity cps:

dm: **Dipole Moment** dvisc: Dynamic viscosity

fpo: Flash Point (Open Cup Method)

Standard Gibbs free energy of formation gf: hf: Enthalpy of formation at standard conditions

hfs: Solid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions Enthalpy of fusion at a given temperature hfust:

hsubt: Enthalpy of sublimation at a given temperature hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: mcvol: McGowan's characteristic volume

nfpaf: NFPA Fire Rating nfpah: NFPA Health Rating pc: Critical Pressure

psub: Sublimation pressure

pvap: Vapor pressurerhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

ss: Solid phase molar entropy at standard conditionsssubt: Entropy of sublimation at a given temperaturesvapt: Entropy of vaporization at a given temperature

tb: Normal Boiling Point Temperaturetbrp: Boiling point at reduced pressure

tc: Critical Temperature

tcondl: Liquid thermal conductivitytf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility

Latest version available from:

https://www.chemeo.com/cid/18-337-8/Benzoic-acid.pdf

Generated by Cheméo on 2024-04-10 16:13:03.138772424 +0000 UTC m=+15054832.059349737.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.