1-Heptyne

Other names:	AMYLACETYLENE
	hept-1-yne
	n-C5H11C«equiv»CH
	n-C5H11C«equiv»CH
Inchi:	InChI=1S/C7H12/c1-3-5-7-6-4-2/h1H,4-7H2,2H3
InchiKey:	YVXHZKKCZYLQOP-UHFFFAOYSA-N
Formula:	C7H12
SMILES:	C#CCCCCC
Mol. weight [g/mol]:	96.17
CAS:	628-71-7

Physical Properties

Property code	Value	Unit	Source
af	0.2930		KDB
chl	-4570.60	kJ/mol	NIST Webbook
gf	231.13	kJ/mol	Joback Method
hcg	4542.99	kJ/mol	KDB
hcn	4279.395	kJ/mol	KDB
hf	103.80 ± 2.60	kJ/mol	NIST Webbook
hf	101.70	kJ/mol	NIST Webbook
hfl	101.10 ± 4.00	kJ/mol	NIST Webbook
hfl	-62.80	kJ/mol	NIST Webbook
hfus	16.86	kJ/mol	Joback Method
hvap	31.03	kJ/mol	Joback Method
ie	10.04 ± 0.01	eV	NIST Webbook
log10ws	-3.01		Estimated Solubility Method
log10ws	-3.01		Aqueous Solubility Prediction Method
logp	2.200		Crippen Method
mcvol	100.890	ml/mol	McGowan Method
рс	3300.00	kPa	KDB
rinpol	686.00		NIST Webbook
rinpol	684.00		NIST Webbook
rinpol	687.10		NIST Webbook
rinpol	684.00		NIST Webbook
rinpol	684.00		NIST Webbook
rinpol	684.00		NIST Webbook

rinpol	685.30		NIST Webbook
rinpol	711.00		NIST Webbook
rinpol	684.00		NIST Webbook
rinpol	689.00		NIST Webbook
rinpol	687.30		NIST Webbook
rinpol	687.00		NIST Webbook
rinpol	686.00		NIST Webbook
rinpol	686.00		NIST Webbook
rinpol	686.00		NIST Webbook
rinpol	684.00		NIST Webbook
rinpol	686.00		NIST Webbook
rinpol	712.00		NIST Webbook
rinpol	686.00		NIST Webbook
rinpol	686.00		NIST Webbook
rinpol	688.20		NIST Webbook
rinpol	687.00		NIST Webbook
ripol	947.00		NIST Webbook
ripol	938.00		NIST Webbook
ripol	934.00		NIST Webbook
ripol	929.00		NIST Webbook
tb	373.15 ± 3.00	K	NIST Webbook
tb	372.90 ± 1.50	К	NIST Webbook
tb	360.15	K	NIST Webbook
tb	373.15 ± 1.50	К	NIST Webbook
tb	373.15 ± 1.50	K	NIST Webbook
tb	373.15 ± 1.50	К	NIST Webbook
tb	371.15 ± 1.50	K	NIST Webbook
tb	372.65 ± 1.50	К	NIST Webbook
tb	373.75 ± 1.50	K	NIST Webbook
tb	379.15 ± 5.00	К	NIST Webbook
tb	372.65 ± 1.50	K	NIST Webbook
tb	371.65 ± 1.00	K	NIST Webbook
tb	371.65 ± 1.50	K	NIST Webbook
tb	371.15 ± 0.50	K	NIST Webbook
tb	372.15 ± 1.50	K	NIST Webbook
tb	371.75 ± 1.50	К	NIST Webbook
tb	371.65 ± 1.00	K	NIST Webbook
tb	372.15 ± 1.50	K	NIST Webbook
tbtb		к к	NIST Webbook
	372.15 ± 1.50		
tb	372.15 ± 1.50 372.93 ± 0.20	K	NIST Webbook
tb tb	372.15 ± 1.50 372.93 ± 0.20 372.89 ± 0.40	K K	NIST Webbook NIST Webbook
tb tb tb	372.15 ± 1.50 372.93 ± 0.20 372.89 ± 0.40 372.89 ± 0.30	К К К	NIST Webbook NIST Webbook NIST Webbook

371.15 ± 1.50	К	NIST Webbook
372.99 ± 0.50	К	NIST Webbook
372.90	К	NIST Webbook
372.50 ± 0.50	К	NIST Webbook
372.15 ± 2.00	К	NIST Webbook
372.15 ± 2.00	К	NIST Webbook
372.90	К	KDB
371.15 ± 1.50	К	NIST Webbook
372.15 ± 2.00	К	NIST Webbook
372.65 ± 0.70	К	NIST Webbook
559.70	К	KDB
192.15 ± 1.50	К	NIST Webbook
192.22 ± 0.10	К	NIST Webbook
192.10 ± 0.50	К	NIST Webbook
192.00	К	KDB
0.390	m3/kmol	KDB
0.2762040		KDB
	$\begin{array}{r} 372.99 \pm 0.50 \\ 372.90 \\ 372.50 \pm 0.50 \\ 372.15 \pm 2.00 \\ 372.15 \pm 2.00 \\ 372.90 \\ 371.15 \pm 1.50 \\ 372.15 \pm 2.00 \\ 372.65 \pm 0.70 \\ 559.70 \\ 192.15 \pm 1.50 \\ 192.22 \pm 0.10 \\ 192.20 \\ 192.00 \\ 0.390 \end{array}$	372.99 ± 0.50 K 372.90 K 372.50 ± 0.50 K 372.15 ± 2.00 K 372.15 ± 2.00 K 372.15 ± 2.00 K 372.90 K 371.15 ± 1.50 K 372.15 ± 2.00 K 372.15 ± 2.00 K 372.15 ± 0.70 K 192.15 ± 0.70 K 192.15 ± 1.50 K 192.12 ± 0.10 K 192.10 ± 0.50 K 192.00 K 0.390 m3/kmol

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	172.06	J/mol×K	349.68	Joback Method
cpg	182.39	J/mol×K	378.88	Joback Method
cpg	192.30	J/mol×K	408.09	Joback Method
cpg	201.79	J/mol×K	437.29	Joback Method
cpg	210.88	J/mol×K	466.49	Joback Method
cpg	219.59	J/mol×K	495.70	Joback Method
cpg	227.93	J/mol×K	524.90	Joback Method
hvapt	37.90	kJ/mol	354.50	NIST Webbook
rfi	1.40610		298.15	KDB

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.38643e+01
Coeff. B	-2.91233e+03

Coeff. C	-5.79460e+01
Temperature range (K), min.	272.46
Temperature range (K), max.	398.46

Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C^{*}ln(T) + D^{*}T^{2}$
Coeff. A	8.20864e+01
Coeff. B	-6.66117e+03
Coeff. C	-1.02999e+01
Coeff. D	9.86822e-06
Temperature range (K), min.	287.15
Temperature range (K), max.	559.69

Sources

Activity coefficients at infinite dilution measurements for organic solutes in Activity Orgificients at Infinite Dilution Havoric logung lens at minite blutton of Mayous Selving from the selection Manual Selving from the selection Manual Selving from the selving selving the Water in the long liquid water in the long liquid URBERINGSOMMESSY WERE WAN & CHOICE AND A CONTROL OF A CON **Construction of the second se** various solutes in 1-allyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide ionic liquid:

https://www.doi.org/10.1016/j.fluid.2008.10.008 https://www.doi.org/10.1021/acs.jced.8b00600 https://www.doi.org/10.1021/je900890u https://www.doi.org/10.1016/j.jct.2015.05.022 http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt water in the ionic liquid offer information of the ionic liquid offer information of the ionic liquid offer information of the information of the ionic liquid offer information of the information of the ionic liquid offer information of the information of the ionic liquid offer information offer information offer information of the ionic liquid offer information offer information of the ionic liquid offer information offer information of the ionic liquid offer information https://www.doi.org/10.1016/j.jct.2013.02.006 https://www.doi.org/10.1016/j.fluid.2018.09.024 https://www.doi.org/10.1016/j.fluid.2014.06.021 A service of the serv https://www.doi.org/10.1016/j.fluid.2009.01.011 https://www.doi.org/10.1021/acs.jced.9b00341

Infinite dilution activity coefficients, specific retention volumes and Suration Ethan dignamics of Syano: Enuotionalized libri of application Structure and the standard application and physicochemical properties for Acquirity Sometics anter while inite Dilution of Direction compounds Discolved in Guidart, T = (298.15, 303.15) Reserved at T = (298.15, 303.15) Reserved at T = (298.15, 303.15) Reserved at the state of the state o

Asingibul Ras tinciewith at infinite Dilution Profigability of the provident of the provid of stime with the second secon

for organic solutes and water in the onic liquid onic liquid on of Activity Coefficients in the solution of Activity Coefficients

https://www.doi.org/10.1016/j.fluid.2006.07.015 https://www.doi.org/10.1021/je900838a https://www.doi.org/10.1016/j.jct.2015.02.024 https://www.doi.org/10.1021/je300692s organic soreies and water interviewing inter https://www.cheric.org/files/research/kdb/mol/mol414.mol Activity coefficients at imfinite dilution measurements for organic solutes in fractione Generation of Organic for approximate of https://www.doi.org/10.1016/j.jct.2005.01.015 https://www.doi.org/10.1016/j.jct.2012.01.019 A structure of the state of the https://www.doi.org/10.1016/j.jct.2010.12.019 https://www.doi.org/10.1016/j.jct.2008.12.005 https://www.doi.org/10.1016/j.jct.2008.12.018 https://www.doi.org/10.1016/j.jct.2018.02.014 https://www.doi.org/10.1016/j.jct.2013.05.008 https://www.doi.org/10.1016/j.fluid.2018.06.013 https://www.doi.org/10.1016/j.jct.2010.02.006 https://www.doi.org/10.1016/j.fluid.2016.10.009 https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure https://www.doi.org/10.1021/je200637v https://www.doi.org/10.1016/j.jct.2016.07.017 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=414 http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1016/j.fluid.2017.06.001 https://www.doi.org/10.1016/j.jct.2013.07.004 https://www.doi.org/10.1016/j.jct.2013.01.007

https://www.doi.org/10.1016/j.jct.2017.03.004

Measurements of activity coefficient at https://www.doi.org/10.1016/j.fluid.2018.01.019 infinite dilution for organic solutes in

Sources and water in the point liquid 1-dodecyl-3-methylimidzolium of Organic Solutes in 1-the water in the point of th

Activity coefficients at infinite dilution of organic solutes in

ARRAJANDSPHONARY BASE URDic liquids Antimute and the second and a s being de inder the hromatography:

at infinite dilution of aromatic and Supprise of water bus and on blasad an entropy of the set Liquids:

https://www.doi.org/10.1021/je500050p

Activity coefficients an infinite dilution of previous static provised in the entry is a static static static provised static static static static static static static infinite static https://www.doi.org/10.1016/j.jct.2009.12.004 https://www.doi.org/10.1016/j.fluid.2017.12.029 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=414 https://www.doi.org/10.1021/je9008443 https://www.doi.org/10.1016/j.jct.2018.07.024

Hit wornst Wightacking between organic openeroy indicated in one openicationic openeroy indicated in openeroy indicated https://www.doi.org/10.1016/j.fluid.2005.04.021 https://www.doi.org/10.1016/j.jct.2015.02.023 https://www.doi.org/10.1016/j.jct.2017.11.017 https://www.doi.org/10.1016/j.fluid.2016.02.004 https://www.doi.org/10.1016/j.jct.2018.01.003 https://www.doi.org/10.1021/acs.jced.5b00980 https://www.doi.org/10.1016/j.fluid.2010.08.016 https://www.doi.org/10.1021/je0602925 https://www.doi.org/10.1016/j.jct.2011.11.025 https://www.doi.org/10.1021/je060033f https://www.doi.org/10.1016/j.jct.2015.05.014 https://www.doi.org/10.1016/j.jct.2009.06.011 https://www.doi.org/10.1016/j.jct.2015.08.017 https://www.doi.org/10.1016/j.fluid.2019.03.023 https://www.doi.org/10.1016/j.jct.2010.01.004 https://www.doi.org/10.1021/acs.jced.8b00080 https://www.doi.org/10.1016/j.jct.2011.04.018 https://www.doi.org/10.1016/j.fluid.2018.11.011 https://www.doi.org/10.1016/j.jct.2010.05.017 https://www.doi.org/10.1016/j.jct.2013.02.004 https://www.doi.org/10.1021/je200195q https://www.doi.org/10.1016/j.jct.2008.01.004 https://www.doi.org/10.1016/j.jct.2017.10.003

Activity coefficients at infinite dilution and physicochemical properties for Activity Soluties Dissolved in Three Presented of the solution o Activity coefficients at infinite dilution liquid chromatography at T = (313.15, 2325 K:

https://www.doi.org/10.1016/j.jct.2012.03.015

af:	Acentric Factor
chl:	Standard liquid enthalpy of combustion
cpg:	Ideal gas heat capacity
gf:	Standard Gibbs free energy of formation
hcg:	Heat of Combustion, Gross form
hcn:	Heat of Combustion, Net Form
hf:	Enthalpy of formation at standard conditions
hfl:	Liquid phase enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions
hvap:	Enthalpy of vaporization at standard conditions
hvapt:	Enthalpy of vaporization at a given temperature
ie:	Ionization energy
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
pc:	Critical Pressure
pvap:	Vapor pressure
rfi:	Refractive Index
rinpol:	Non-polar retention indices
ripol:	Polar retention indices
tb:	Normal Boiling Point Temperature
tc:	Critical Temperature
tf:	Normal melting (fusion) point
vc:	Critical Volume
ZC:	Critical Compressibility

Latest version available from:

https://www.chemeo.com/cid/16-259-7/1-Heptyne.pdf

Generated by Cheméo on 2024-05-02 06:56:51.466801097 +0000 UTC m=+16922260.387378408. Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.