1-Heptyne

Other names: AMYLACETYLENE

hept-1-yne

n-C5H11C«equiv»CH n-C5H11C«equiv»CH

Inchi: InChl=1S/C7H12/c1-3-5-7-6-4-2/h1H,4-7H2,2H3

InchiKey: YVXHZKKCZYLQOP-UHFFFAOYSA-N

Formula: C7H12

SMILES: C#CCCCC

Mol. weight [g/mol]: 96.17 CAS: 628-71-7

Physical Properties

Property code	Value	Unit	Source	
af	0.2930		KDB	
chl	-4570.60	kJ/mol	NIST Webbook	
gf	231.13	kJ/mol	Joback Method	
hcg	4542.99	kJ/mol	KDB	
hcn	4279.395	kJ/mol	KDB	
hf	103.80 ± 2.60	kJ/mol	NIST Webbook	
hf	101.70	kJ/mol	NIST Webbook	
hfl	101.10 ± 4.00	kJ/mol	NIST Webbook	
hfl	-62.80	kJ/mol	NIST Webbook	
hfus	16.86	kJ/mol	Joback Method	
hvap	31.03	kJ/mol	Joback Method	
ie	10.04 ± 0.01	eV	NIST Webbook	
log10ws	-3.01		Estimated Solubility Method	
log10ws	-3.01		Aqueous Solubility Prediction Method	
logp	2.200		Crippen Method	
mcvol	100.890	ml/mol	McGowan Method	
рс	3300.00	kPa	KDB	
rinpol	686.00		NIST Webbook	
rinpol	685.30		NIST Webbook	
rinpol	686.00		NIST Webbook	
rinpol	711.00		NIST Webbook	
rinpol	684.00		NIST Webbook	
rinpol	684.00		NIST Webbook	

rinnal	694.00		NICT Wahhaak	
rinpol		684.00 NIST Webbook		
rinpol		684.00 NIST Webbo		
rinpol		687.10 NIST Webboo		
rinpol		687.00 NIST Webb		
rinpol		686.00 NIST Web		
rinpol	686.00		NIST Webbook	
rinpol	686.00		NIST Webbook	
rinpol	686.00		NIST Webbook	
rinpol	712.00		NIST Webbook	
rinpol	689.00		NIST Webbook	
rinpol	687.00		NIST Webbook	
rinpol	686.00		NIST Webbook	
rinpol	688.20		NIST Webbook	
rinpol	687.30		NIST Webbook	
rinpol	684.00		NIST Webbook	
rinpol	684.00		NIST Webbook	
ripol	938.00		NIST Webbook	
ripol	947.00		NIST Webbook	
ripol	929.00		NIST Webbook	
ripol	934.00		NIST Webbook	
tb	372.50 ± 0.50	K	NIST Webbook	
tb	373.15 ± 3.00	K	NIST Webbook	
tb	372.15 ± 2.00	K	NIST Webbook	
tb	372.15 ± 2.00	K	NIST Webbook	
tb	372.15 ± 2.00	K	NIST Webbook	
tb	372.90	K	KDB	
tb	372.65 ± 2.00	K	NIST Webbook	
tb	372.90	K	NIST Webbook	
tb	372.99 ± 0.50	K	NIST Webbook	
tb	371.15 ± 1.50	K	NIST Webbook	
tb	374.00 ± 2.00	K	NIST Webbook	
tb	371.65 ± 2.00	K	NIST Webbook	
tb	371.15 ± 1.50	K	NIST Webbook	
tb	372.65 ± 0.70	K	NIST Webbook	
tb	372.89 ± 0.30	K	NIST Webbook	
tb	372.89 ± 0.40	K	NIST Webbook	
tb	372.93 ± 0.20	K	NIST Webbook	
tb	372.15 ± 1.50			
tb	373.15 ± 1.50			
tb	371.75 ± 1.50	K	NIST Webbook	
tb	372.15 ± 1.50	K	NIST Webbook	
tb	371.15 ± 0.50	K	NIST Webbook	
tb	371.65 ± 1.50	K	NIST Webbook	
tb	371.65 ± 1.00	K	NIST Webbook	
	3 1.00			

tb	372.65 ± 1.50	K	NIST Webbook
tb	373.75 ± 1.50	K	NIST Webbook
tb	372.65 ± 1.50	K	NIST Webbook
tb	371.15 ± 1.50	K	NIST Webbook
tb	373.15 ± 1.50	K	NIST Webbook
tb	373.15 ± 1.50	K	NIST Webbook
tb	379.15 ± 5.00	K	NIST Webbook
tb	371.65 ± 1.00	K	NIST Webbook
tb	372.90 ± 1.50	K	NIST Webbook
tb	360.15	K	NIST Webbook
tc	559.70	K	KDB
tf	192.00	K	KDB
tf	192.22 ± 0.10	K	NIST Webbook
tf	192.15 ± 1.50	K	NIST Webbook
tf	192.10 ± 0.50	K	NIST Webbook
VC	0.390	m3/kmol	KDB
ZC	0.2762040		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	210.88	J/mol×K	466.49	Joback Method
cpg	219.59	J/mol×K	495.70	Joback Method
cpg	172.06	J/mol×K	349.68	Joback Method
cpg	182.39	J/mol×K	378.88	Joback Method
cpg	192.30	J/mol×K	408.09	Joback Method
cpg	201.79	J/mol×K	437.29	Joback Method
cpg	227.93	J/mol×K	524.90	Joback Method
hvapt	37.90	kJ/mol	354.50	NIST Webbook
rfi	1.40610		298.15	KDB

Correlations

Information Value

Property code	pvap	
Equation	In(Pvp) = A + B/(T + C)	
Coeff. A	1.38643e+01	
Coeff. B	-2.91233e+03	

Coeff. C	-5.79460e+01	
Temperature range (K), min.	272.46	
Temperature range (K), max.	398.46	

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	8.20864e+01
Coeff. B	-6.66117e+03
Coeff. C	-1.02999e+01
Coeff. D	9.86822e-06
Temperature range (K), min.	287.15
Temperature range (K), max.	559.69

Sources

Activity Coefficients at Infinite Dilution https://www.doi.org/10.1021/je300692s for Organic Compounds Dissolved in

for Organic Compounds Dissolved in Experimental problems of the problems of th separation on investigation of limiting Activity Coefficients with Infinite Dilution pi Oggani propapoundadni Four New halassi i universe ed la racte i caties: molecular volume and hydrophobicity Activity gaefficients at infinite dilution measurements for organic solutes and

Walter In Miget 10 Aic liquid triethylsulphonium
Acking the control of the contro

for solutes in the Rocklyncentisiants គេប៉ាក្រាinite dilution THOO THE CHAPTER HER THE HEALTH HE WIND THE HEALTH HE HEALTH HEALTH HEALTH HEALTH HEALTH HEALTH HEALTH HEALTH HEALTH Preservation in a land in the control of the contro

ច្ចេញគ្រូលរបស់ ដាម water មា មានចារៈ ប្រទេស/www.doi.org/10.1016/j.jtd.2014.11.02 ព្រញ្ញាគ្នូលរបស់ ដាម នេះ ប្រទេស/www.doi.org/10.1016/j.jtd.2014.11.02 វិទ្ធាម្នាស់ នេះ ប្រទេស/www.doi.org/10.1016/j.jtd.2013.02.006 មានប្រទេស/www.doi.org/10.1016/j.jtd.2013.02.006 មានប្រទេស/www.doi.org/10.1016/j.jtd.2013.02.006 មានប្រទេស នេះ ប្រទេស/www.doi.org/10.1016/j.jtd.2013.02.006 មានប្រទេស/www.doi.org/10.1016/j.jtd.2013.02.006 មានប្រទេស/www.doi.org/10.1016/j.jtd.2013.02.00 N-methylpyrrolidone from gas-liquid

chromatography:

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=414

https://www.doi.org/10.1016/j.fluid.2017.06.001

https://www.doi.org/10.1021/je200195q

https://www.doi.org/10.1016/j.jct.2010.04.011

https://www.doi.org/10.1016/j.jct.2008.12.005

https://en.wikipedia.org/wiki/Joback_method

https://www.doi.org/10.1016/j.jct.2004.03.001

https://www.doi.org/10.1016/j.jct.2009.08.012

https://www.doi.org/10.1016/j.jct.2018.01.003

https://www.doi.org/10.1016/j.jct.2013.05.011

https://www.doi.org/10.1021/je101008y

https://www.doi.org/10.1021/acs.jced.8b00080

https://www.doi.org/10.1016/j.fluid.2016.02.004

https://www.doi.org/10.1021/je1000582

https://www.doi.org/10.1016/j.jct.2018.02.014

https://www.doi.org/10.1016/j.jct.2012.05.017

https://www.doi.org/10.1016/j.fluid.2014.11.020

Activity coefficients at infinite dilution https://www.doi.org/10.1016/j.jct.2013.05.008 Activity Coefficients at infinite dilution and physicochemical properties for Adjantic sentitistical microprises for Adjantic sentitistic sentitistis sentitis sentit and physicochemical properties for https://www.doi.org/10.1016/j.jct.2012.01.019 Activity sortficients wateriniteral lutine http://link.springer.com/article/10.1007/BF02311772 Activity Coefficients at Infihite Diution for Organic Solutes Dissolved in Three Thempotymential panelialitiuity passification activities distributed in the passification of the https://www.doi.org/10.1016/j.jct.2013.08.030 https://www.doi.org/10.1016/j.jct.2007.01.004 https://www.doi.org/10.1016/j.jct.2012.03.005 https://www.doi.org/10.1016/j.fluid.2010.08.016 https://www.doi.org/10.1016/j.jct.2011.02.012 https://www.doi.org/10.1016/j.jct.2013.09.007 https://www.doi.org/10.1016/j.jct.2011.11.021 https://www.doi.org/10.1016/j.jct.2016.01.017 https://www.doi.org/10.1016/j.jct.2010.05.017 https://www.doi.org/10.1016/j.jct.2013.01.007 ACT WAS CONTICIONES AT MINITE UNUTION

AND ADVISICACIA MINICALITATION OF THE CONTINUATION OF THE CONTINUAT https://www.doi.org/10.1016/j.fluid.2018.09.024 https://www.doi.org/10.1021/je900838a https://www.doi.org/10.1016/j.jct.2009.06.011 https://www.doi.org/10.1016/j.fluid.2009.01.011 Materity enefficients aid infinite dilution THE WATER WELL TO SHOW THE COURT OF THE STATE OF THE STAT https://www.doi.org/10.1016/j.jct.2012.09.033 https://www.doi.org/10.1016/j.jct.2015.02.024 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=414 ប៉ុន្តែអេថ្ម Gas-Liquid Chromatography at T អូវទាន់មួយស្រួចទទ្រង្សាន់អូចដាំងរ៉េន្ទាច់ក្រុងប្រាស់ bis(trifluoromethylsulfonyl)-amide:

```
Activity Coefficients at Infinite Dilution
                                                                                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/acs.jced.8b00600
       of Various Solutes in
       ActivityopgestinientsuthiBfinitedeilution
                                                                                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1016/j.fluid.2008.10.008
       measekenenta forer canecaelatasein:
Activitic Organicients at Infinite Dilution
                                                                                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1021/je900890u
   Heining Orafficients at Infinite Dilution Measuremaets for Argania Solutes and Measuremaets for Argania Solute 
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2016.10.009
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2010.12.019
                                                                                                                                                                                                                                                                                                                                                                                        https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
      Activity coefficients at infinite dilution
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2012.03.015
      and physicochemical properties for Separation of the inner series 
   Segandisolofe land white if she ionic harmed hex-1-ene, white if she ionic harmed hex-1-ene, white is a segandist of she is a segandis of she is a segandist of she is a segandist of she is a segandi
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2017.03.004
      at infinite dilution for organic solutes infinite delution for organic solutes of
                                                                                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je500050p
       Solutes Dinsellyan ind Zygium
ใช้เมื่อเกียงใช้ เกิดขึ้นที่ เกิดขึ้นครั้ง
อุเลกเทียงใช้ Dilution of Solutes in the
โลสาชาอิเลสเลือในbility Method:
                                                                                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je0500375
Interpretation of Solutes in the Britopiaga Solution of Solutes in the Britopiaga Solution of Solutes in the Britopiaga Solution Octvises and the Britopiaga Solution of Solutes in the Britopiaga Solution of Solution 
                                                                                                                                                                                                                                                                                                                                                                                        http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl file/ci034243xsi20040112 053635.txt
    明報時間で翻作所の前語が路線を砂板門間間間

前前が情報を見まれている。

情報を表現的を可しています。

情報を表現的を可している。

を砂度にはいい。

を砂度にはいる。

を砂度にはいる。

を砂度にはいる。

を砂度にはいる。

にはいる。

にはな。

にはな。

にはな。

にはな。

にはな。

にはな。
                                                                                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1016/j.fluid.2018.11.011
                                                                                                                                                                                                                                                                                                                                                                                       http://pubs.acs.org/doi/abs/10.1021/ci990307l
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2014.06.021
       Tetrapoethydammonium chloride +
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2018.06.003
    compounds and when the compounds and supposed the compounds of the compound of
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2008.01.004
```

alipbethic hyalrogathogracial councils, and westen circhts: new ionic liquid [EMIM][SCN] using GLC: Activity coefficients at infinite dilution of organic solutes in the ionic liquid Activity and finite in the ionic liquid Activity and finite in the ionic liquid Activity and finite interest of the ionic liquid and in the ionic liquid ion

https://www.doi.org/10.1016/j.jct.2009.07.010

https://www.doi.org/10.1016/j.jct.2005.01.015

https://www.doi.org/10.1016/j.fluid.2018.06.013

https://www.doi.org/10.1021/je0498107

https://www.cheric.org/files/research/kdb/mol/mol414.mol

https://www.doi.org/10.1021/je200637v

https://www.doi.org/10.1016/j.jct.2016.06.028

af: Acentric Factor

this part thyl)sulfonyl}imide

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacity

gf: Standard Gibbs free energy of formation

hcg: Heat of Combustion, Gross form hcn: Heat of Combustion, Net Form

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressurerfi: Refractive Index

rinpol: Non-polar retention indices

ripol: Polar retention indices

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

zc: Critical Compressibility

Latest version available from:

https://www.chemeo.com/cid/16-259-7/1-Heptyne.pdf

Generated by Cheméo on 2024-04-19 20:57:29.130116342 +0000 UTC m=+15849498.050693657.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.