Benzene

Other names: 1,3,5-Cyclohexatriene

Benzeen
Benzen
Benzin
Benzine
Benzol
Benzole
Benzolene
Benzolo

Bicarburet of hydrogen

Carbon oil
Coal naphtha
Cyclohexatriene

Fenzen

Mineral naphtha Motor benzol NCI-C55276 NSC 67315 Phene

Phenyl hydride Pyrobenzol Pyrobenzole

Rcra waste number U019

UN 1114 [6]Annulene

Inchi: InChl=1S/C6H6/c1-2-4-6-5-3-1/h1-6H InchiKey: UHOVQNZJYSORNB-UHFFFAOYSA-N

Formula: C6H6

SMILES: c1ccccc1

Mol. weight [g/mol]: 78.11

CAS: 71-43-2

Physical Properties

Property code	Value	Unit	Source
af	0.2120		KDB
affp	750.40	kJ/mol	NIST Webbook

affp	746.40	kJ/mol	NIST Webbook
<u> </u>	864.82	KS/ITIOI	KDB
aigt	721.70	kJ/mol	NIST Webbook
basg basg	725.40	kJ/mol	NIST Webbook
dm	0.00		KDB
dvisc	0.006080	debye Paxs	Densities and Viscosities
			of Binary Liquid Mixtures of Trichloroethylene and Tetrachloroethylene with Some Polar and Nonpolar Solvents
dvisc	0.0006040	Pa×s	Densities and Viscosities for the Ternary Systems of Methyl tert-Butyl Ether + Methanol + Benzene and Methyl tert-Butyl Ether + Methanol + Toluene and Their Sub-binary Systems at 298.15 K
fII	1.30	% in Air	KDB
flu	7.90	% in Air	KDB
fpo	262.04	K	KDB
gf	129.70	kJ/mol	KDB
gyrad	3.0040		KDB
hcg	3267.62	kJ/mol	KDB
hcn	3135.573	kJ/mol	KDB
hf	82.98	kJ/mol	KDB
hf	82.80	kJ/mol	NIST Webbook
hf	82.90 ± 0.90	kJ/mol	NIST Webbook
hf	79.90	kJ/mol	NIST Webbook
hf	82.93 ± 0.50	kJ/mol	NIST Webbook
hfl	48.95 ± 0.54	kJ/mol	NIST Webbook
hfl	49.00 ± 0.90	kJ/mol	NIST Webbook
hfl	46.00	kJ/mol	NIST Webbook
hfl	49.04 ± 0.50	kJ/mol	NIST Webbook
hfus	5.73	kJ/mol	Joback Method
hsub	44.40	kJ/mol	NIST Webbook
hvap	30.56	kJ/mol	Joback Method
ie	9.80 ± 0.10	eV	NIST Webbook
ie	9.25 ± 0.01	eV	NIST Webbook
ie	9.25 ± 0.00	eV	NIST Webbook
ie	9.25	eV	NIST Webbook
ie	9.20	eV	NIST Webbook
ie	9.25	eV	NIST Webbook
ie	9.24 ± 0.01	eV	NIST Webbook
ie	9.24 ± 0.01	eV	NIST Webbook
ie	9.24	eV	NIST Webbook
ie	9.24 ± 0.01	eV	NIST Webbook
			_

ie	9.23	eV	NIST Webbook
ie	9.25 ± 0.01	eV	NIST Webbook
ie	9.26 ± 0.02	eV	NIST Webbook
ie	9.25 ± 0.02	eV	NIST Webbook
ie	9.25	eV	NIST Webbook
ie	9.24	eV	NIST Webbook
ie	9.25	eV	NIST Webbook
ie	9.25 ± 0.01	eV	NIST Webbook
ie	9.24 ± 0.01	eV	NIST Webbook
ie	9.25	eV	NIST Webbook
ie	9.24 ± 0.00	eV	NIST Webbook
ie	9.36 ± 0.05	eV	NIST Webbook
ie	9.25 ± 0.01	eV	NIST Webbook
ie	9.24 ± 0.01	eV	NIST Webbook
ie	9.27	eV	NIST Webbook
ie	9.26 ± 0.06	eV	NIST Webbook
ie	9.20 ± 0.10	eV	NIST Webbook
ie	9.25	eV	NIST Webbook
ie	9.70	eV	NIST Webbook
ie	9.24	eV	NIST Webbook
ie	9.22	eV	NIST Webbook
ie	9.25 ± 0.02	eV	NIST Webbook
ie	9.24	eV	NIST Webbook
ie	9.22	eV	NIST Webbook
ie	9.25	eV	NIST Webbook
ie	9.44	eV	NIST Webbook
ie	9.24 ± 0.00	eV	NIST Webbook
ie	9.25	eV	NIST Webbook
ie	9.23	eV	NIST Webbook
ie	9.25	eV	NIST Webbook
ie	9.23 ± 0.03	eV	NIST Webbook
ie	9.25 ± 0.00	eV	NIST Webbook
ie	9.20	eV	NIST Webbook
ie	9.24 ± 0.00	eV	NIST Webbook
ie	9.24 ± 0.00	eV	NIST Webbook
ie	9.24 ± 0.00	eV	NIST Webbook
ie	9.23	eV	NIST Webbook
ie	9.30	eV	NIST Webbook
ie	9.24 ± 0.02	eV	NIST Webbook
ie	9.25 ± 0.05	eV	NIST Webbook
ie	9.24	eV	NIST Webbook
ie	9.24	eV	NIST Webbook
ie	9.23	eV	NIST Webbook
ie	9.24	eV	NIST Webbook

ie	9.24	eV	NIST Webbook
ie	9.25 ± 0.03	eV	NIST Webbook
ie	9.24	eV	NIST Webbook
ie	9.24	eV	NIST Webbook
ie	9.24	eV	NIST Webbook
ie	9.20 ± 0.04	eV	NIST Webbook
ie	9.25 ± 0.07	eV	NIST Webbook
ie	9.20	eV	NIST Webbook
log10ws	-1.64		Aqueous Solubility Prediction Method
log10ws	-1.64		Estimated Solubility Method
logp	1.687		Crippen Method
mcvol	71.640	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=2)		KDB
рс	6120.00 ± 709.28	kPa	NIST Webbook
рс	4895.00 ± 6.00	kPa	NIST Webbook
рс	4884.00 ± 20.00	kPa	NIST Webbook
рс	4900.00 ± 10.00	kPa	NIST Webbook
рс	4894.00 ± 10.00	kPa	NIST Webbook
рс	4875.75 ± 30.00	kPa	NIST Webbook
рс	4898.00 ± 2.00	kPa	NIST Webbook
рс	4897.00 ± 10.00	kPa	NIST Webbook
рс	4887.00 ± 3.00	kPa	NIST Webbook
pc	4889.00 ± 3.00	kPa	NIST Webbook
рс	4900.00 ± 50.66	kPa	NIST Webbook
pc	4885.89 ± 5.06	kPa	NIST Webbook
pc	4885.89 ± 4.05	kPa	NIST Webbook
pc	4898.00 ± 5.00	kPa	NIST Webbook
рс	4896.00 ± 10.34	kPa	NIST Webbook
рс	4900.00 ± 10.13	kPa	NIST Webbook
pc	4892.00 ± 8.10	kPa	NIST Webbook
pc	4936.65 ± 55.15	kPa	NIST Webbook
рс	4853.47 ± 50.66	kPa	NIST Webbook
рс	4895.00	kPa	KDB
рс	4875.00 ± 27.58	kPa	NIST Webbook
pc	4930.90 ± 40.00	kPa	NIST Webbook
pc pc	4852.30 ± 53.33	kPa	NIST Webbook
pc	5020.00 ± 101.33	kPa	NIST Webbook
·	4910.00 ± 4.90	kPa	NIST Webbook
pc pc	4852.27 ± 39.99	kPa	NIST Webbook
		kPa	NIST Webbook
•	// / / / / / / / / / / / / / / / / / / /	k = 3	INI.3 I VVERBOOK
рс	4898.00 ± 10.13		
•	4898.00 ± 10.13 304.48 ± 3.91 296.98 ± 7.81	kg/m3	NIST Webbook NIST Webbook

rhoc	304.40 ± 3.91	kg/m3	NIST Webbook
rhoc	303.85 ± 4.69	kg/m3	NIST Webbook
rhoc	274.95 ± 1.48	kg/m3	NIST Webbook
rhoc	306.20 ± 2.34	kg/m3	NIST Webbook
rhoc	316.35 ± 4.69	kg/m3	NIST Webbook
rhoc	300.73 ± 6.25	kg/m3	NIST Webbook
rhoc	300.73 ± 6.25	kg/m3	NIST Webbook
rhoc	302.29 ± 6.25	kg/m3	NIST Webbook
rhoc	303.78 ± 3.91	kg/m3	NIST Webbook
rhoc	304.64 ± 0.47	kg/m3	NIST Webbook
rinpol	648.00		NIST Webbook
rinpol	659.10		NIST Webbook
rinpol	670.70		NIST Webbook
rinpol	650.30		NIST Webbook
rinpol	654.90		NIST Webbook
rinpol	648.00		NIST Webbook
rinpol	680.00		NIST Webbook
rinpol	659.00		NIST Webbook
rinpol	686.80		NIST Webbook
rinpol	653.80		NIST Webbook
rinpol	677.20		NIST Webbook
rinpol	656.00		NIST Webbook
rinpol	675.00		NIST Webbook
rinpol	687.00		NIST Webbook
rinpol	651.00		NIST Webbook
rinpol	641.40		NIST Webbook
rinpol	641.80		NIST Webbook
rinpol	651.30		NIST Webbook
rinpol	664.00		NIST Webbook
rinpol	649.00		NIST Webbook
rinpol	654.20		NIST Webbook
rinpol	643.00		NIST Webbook
rinpol	667.40		NIST Webbook
rinpol	654.52		NIST Webbook
rinpol	644.50		NIST Webbook
rinpol	686.40		NIST Webbook
rinpol	687.79		NIST Webbook
rinpol	677.75		NIST Webbook
rinpol	667.42		NIST Webbook
rinpol	666.96		NIST Webbook
rinpol	656.09		NIST Webbook
rinpol	641.45		NIST Webbook
rinpol	652.60		NIST Webbook
rinpol	648.90		NIST Webbook
	0.10.00		

rinnol	685.00	NIST Webbook
rinpol rinpol	644.00	NIST Webbook
rinpol	666.00	NIST Webbook
rinpol	650.40	NIST Webbook
•	640.00	NIST Webbook NIST Webbook
rinpol		
rinpol	670.00	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	652.00	NIST Webbook
rinpol	655.00	NIST Webbook
rinpol	657.00	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	665.00	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	665.00	NIST Webbook
rinpol	644.00	NIST Webbook
rinpol	660.00	NIST Webbook
rinpol	673.00	NIST Webbook
rinpol	653.00	NIST Webbook
rinpol	669.00	NIST Webbook
rinpol	666.00	NIST Webbook
rinpol	665.00	NIST Webbook
rinpol	644.00	NIST Webbook
rinpol	634.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	650.40	NIST Webbook
rinpol	644.00	NIST Webbook
rinpol	644.00	NIST Webbook
rinpol	664.60	NIST Webbook
rinpol	663.50	NIST Webbook
rinpol	670.44	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	648.60	NIST Webbook
rinpol	660.00	NIST Webbook
rinpol	665.00	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	640.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	640.00	NIST Webbook
rinpol	643.00	NIST Webbook
rinpol	674.00	NIST Webbook
rinpol	657.00	NIST Webbook
rinpol	664.00	NIST Webbook
	33.1100	

rinnal	657.00	NIST Webbook
rinpol	654.00	NIST Webbook
rinpol	655.00	NIST Webbook
rinpol	657.00	NIST Webbook
		NIST Webbook
rinpol	654.00	
rinpol	664.00	NIST Webbook
rinpol	671.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	639.25	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	686.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	670.00	NIST Webbook
rinpol	661.00	NIST Webbook
rinpol	655.00	NIST Webbook
rinpol	642.00	NIST Webbook
rinpol	642.00	NIST Webbook
rinpol	657.00	NIST Webbook
rinpol	652.00	NIST Webbook
rinpol	648.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	641.00	NIST Webbook
rinpol	642.00	NIST Webbook
rinpol	641.00	NIST Webbook
rinpol	644.00	NIST Webbook
rinpol	640.50	NIST Webbook
rinpol	643.00	NIST Webbook
rinpol	642.00	NIST Webbook
rinpol	640.00	NIST Webbook
rinpol	647.00	NIST Webbook
rinpol	644.00	NIST Webbook
rinpol	653.00	NIST Webbook
rinpol	640.00	NIST Webbook
rinpol	640.00	NIST Webbook
rinpol	638.00	NIST Webbook
rinpol	649.00	NIST Webbook
rinpol	671.30	NIST Webbook
rinpol	661.00	NIST Webbook
rinpol	648.00	NIST Webbook
rinpol	649.00	NIST Webbook
rinpol	667.00	NIST Webbook
rinpol	638.83	NIST Webbook
rinpol	645.30	NIST Webbook
rinpol	652.00	NIST Webbook
1111401	552.00	

rinnol	661.00	NIST Webbook
rinpol rinpol	653.00	NIST Webbook
	656.00	NIST Webbook
rinpol		NIST Webbook
rinpol	646.00	
rinpol	657.00	NIST Webbook
rinpol	661.00	NIST Webbook
rinpol	642.20	NIST Webbook
rinpol	637.00	NIST Webbook
rinpol	657.00	NIST Webbook
rinpol	653.00	NIST Webbook
rinpol	642.50	NIST Webbook
rinpol	650.20	NIST Webbook
rinpol	646.00	NIST Webbook
rinpol	654.80	NIST Webbook
rinpol	638.00	NIST Webbook
rinpol	660.70	NIST Webbook
rinpol	653.60	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	681.00	NIST Webbook
rinpol	631.00	NIST Webbook
rinpol	691.00	NIST Webbook
rinpol	638.00	NIST Webbook
rinpol	685.00	NIST Webbook
rinpol	694.74	NIST Webbook
rinpol	672.74	NIST Webbook
rinpol	674.03	NIST Webbook
rinpol	651.10	NIST Webbook
rinpol	648.90	NIST Webbook
rinpol	657.60	NIST Webbook
rinpol	650.20	NIST Webbook
rinpol	646.80	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	652.60	NIST Webbook
rinpol	638.00	NIST Webbook
rinpol	678.80	NIST Webbook
rinpol	683.30	NIST Webbook
rinpol	641.51	NIST Webbook
rinpol	641.45	NIST Webbook
rinpol	641.96	NIST Webbook
rinpol	649.89	NIST Webbook
rinpol	651.77	NIST Webbook
rinpol	653.93	NIST Webbook
rinpol	656.09	NIST Webbook
rinpol	658.35	NIST Webbook
- IIIIpor	000.00	THO I WODDON

rinnal	660.36	NIST Webbook
rinpol	660.36 663.60	NIST Webbook
	664.40	NIST Webbook NIST Webbook
rinpol		
rinpol	666.96	NIST Webbook
rinpol	643.00	NIST Webbook
rinpol	672.02	NIST Webbook
rinpol	674.86	NIST Webbook
rinpol	666.03	NIST Webbook
rinpol	667.42	NIST Webbook
rinpol	669.56	NIST Webbook
rinpol	671.74	NIST Webbook
rinpol	673.50	NIST Webbook
rinpol	675.70	NIST Webbook
rinpol	677.75	NIST Webbook
rinpol	680.27	NIST Webbook
rinpol	681.27	NIST Webbook
rinpol	683.59	NIST Webbook
rinpol	685.29	NIST Webbook
rinpol	687.79	NIST Webbook
rinpol	672.00	NIST Webbook
rinpol	684.60	NIST Webbook
rinpol	682.50	NIST Webbook
rinpol	676.00	NIST Webbook
rinpol	686.40	NIST Webbook
rinpol	670.45	NIST Webbook
rinpol	636.60	NIST Webbook
rinpol	639.10	NIST Webbook
rinpol	641.70	NIST Webbook
rinpol	644.50	NIST Webbook
rinpol	646.60	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	652.50	NIST Webbook
rinpol	677.20	NIST Webbook
rinpol	654.52	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	654.00	NIST Webbook
rinpol	644.00	NIST Webbook
rinpol	677.00	NIST Webbook
rinpol	663.20	NIST Webbook
rinpol	667.40	NIST Webbook
1111401	331.10	THE I THOUSEN

rinnal	654.70	NIST Webbook
rinpol	660.20	NIST Webbook
rinpol	649.40	NIST Webbook
rinpol	656.30	NIST Webbook
	643.00	NIST Webbook
rinpol		
rinpol	678.10	NIST Webbook
rinpol	688.00	NIST Webbook
rinpol	653.80	NIST Webbook
rinpol	654.20	NIST Webbook
rinpol	654.20	NIST Webbook
rinpol	654.40	NIST Webbook
rinpol	653.50	NIST Webbook
rinpol	647.20	NIST Webbook
rinpol	669.90	NIST Webbook
rinpol	649.00	NIST Webbook
rinpol	666.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	655.00	NIST Webbook
rinpol	655.00	NIST Webbook
rinpol	664.00	NIST Webbook
rinpol	664.00	NIST Webbook
rinpol	663.10	NIST Webbook
rinpol	670.70	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	651.30	NIST Webbook
rinpol	655.40	NIST Webbook
rinpol	651.40	NIST Webbook
rinpol	655.80	NIST Webbook
rinpol	637.20	NIST Webbook
rinpol	641.80	NIST Webbook
rinpol	666.50	NIST Webbook
rinpol	667.40	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	654.00	NIST Webbook
rinpol	655.00	NIST Webbook
rinpol	649.00	NIST Webbook
rinpol	653.00	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	637.00	NIST Webbook
rinpol	641.40	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	661.00	NIST Webbook
rinpol	630.00	NIST Webbook
rinpol	650.00	NIST Webbook
	300.00	

rinnol	664.00	NIST Webbook
rinpol rinpol	687.00	NIST Webbook
	672.00	NIST Webbook
rinpol		NIST Webbook
rinpol	646.00	
rinpol	642.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	652.10	NIST Webbook
rinpol	654.10	NIST Webbook
rinpol	656.00	NIST Webbook
rinpol	658.30	NIST Webbook
rinpol	687.00	NIST Webbook
rinpol	681.00	NIST Webbook
rinpol	655.00	NIST Webbook
rinpol	681.00	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	669.00	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	664.00	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	664.00	NIST Webbook
rinpol	670.00	NIST Webbook
rinpol	647.00	NIST Webbook
rinpol	653.00	NIST Webbook
rinpol	652.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	647.00	NIST Webbook
rinpol	649.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	653.00	NIST Webbook
rinpol	656.00	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	671.10	NIST Webbook
rinpol	673.00	NIST Webbook
rinpol	675.10	NIST Webbook
rinpol	677.20	NIST Webbook
rinpol	679.50	NIST Webbook
rinpol	681.90	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	647.00	NIST Webbook
rinpol	653.80	NIST Webbook
rinpol	654.40	NIST Webbook
rinpol	657.10	NIST Webbook
rinpol	685.20	NIST Webbook
IIIIpor	000.20	THE P WODDOOK

rinnal	685.60	NIST Webbook
rinpol rinpol	686.80	NIST Webbook
•	687.40	NIST Webbook
rinpol		
rinpol	664.00	NIST Webbook
rinpol	652.00	NIST Webbook
rinpol	670.00	NIST Webbook
rinpol	659.00	NIST Webbook
rinpol	664.00	NIST Webbook
rinpol	671.00	NIST Webbook
rinpol	678.00	NIST Webbook
rinpol	667.00	NIST Webbook
rinpol	680.00	NIST Webbook
rinpol	654.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	653.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	648.00	NIST Webbook
rinpol	650.22	NIST Webbook
rinpol	648.40	NIST Webbook
rinpol	650.50	NIST Webbook
rinpol	652.60	NIST Webbook
rinpol	654.90	NIST Webbook
rinpol	657.20	NIST Webbook
rinpol	659.70	NIST Webbook
rinpol	645.70	NIST Webbook
rinpol	648.00	NIST Webbook
rinpol	650.30	NIST Webbook
rinpol	652.70	NIST Webbook
rinpol	655.20	NIST Webbook
rinpol	658.20	NIST Webbook
rinpol	663.60	NIST Webbook
rinpol	670.70	NIST Webbook
rinpol	677.80	NIST Webbook
rinpol	638.00	NIST Webbook
rinpol	653.00	NIST Webbook
rinpol	646.00	NIST Webbook
rinpol	659.10	NIST Webbook
rinpol	642.90	NIST Webbook
rinpol	683.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	637.40	NIST Webbook
rinpol	642.20	NIST Webbook
rinpol	637.20	NIST Webbook
rinpol	642.50	NIST Webbook
IIIpoi	0.12.00	THO! WODDOOK

rinpol	651.00	NIST Webbook
rinpol	652.00	NIST Webbook
rinpol	648.00	NIST Webbook
rinpol	647.80	NIST Webbook
rinpol	648.00	NIST Webbook
rinpol	648.70	NIST Webbook
rinpol	649.00	NIST Webbook
rinpol	642.50	NIST Webbook
rinpol	642.90	NIST Webbook
rinpol	641.10	NIST Webbook
rinpol	641.40	NIST Webbook
rinpol	648.00	NIST Webbook
rinpol	650.20	NIST Webbook
rinpol	636.80	NIST Webbook
rinpol	684.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	645.50	NIST Webbook
rinpol	646.00	NIST Webbook
rinpol	659.20	NIST Webbook
rinpol	639.00	NIST Webbook
rinpol	642.00	NIST Webbook
rinpol	644.42	NIST Webbook
rinpol	648.00	NIST Webbook
rinpol	647.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	674.00	NIST Webbook
rinpol	636.00	NIST Webbook
rinpol	644.00	NIST Webbook
rinpol	637.00	NIST Webbook
rinpol	642.00	NIST Webbook
rinpol	654.80	NIST Webbook
rinpol	654.80	NIST Webbook
rinpol	654.80	NIST Webbook
rinpol	654.70	NIST Webbook
rinpol	654.70	NIST Webbook
rinpol	654.80	NIST Webbook
rinpol	650.40	NIST Webbook
rinpol	638.00	NIST Webbook
rinpol	652.00	NIST Webbook
rinpol	654.00	NIST Webbook
rinpol	654.00	NIST Webbook
rinpol	656.00	NIST Webbook
rinpol	660.70	NIST Webbook
rinpol	649.00	NIST Webbook
ППРОГ	070.00	TAIOT WEDDOOK

	0.44.00	NUCTANALA
rinpol	644.00	NIST Webbook
rinpol	652.00	NIST Webbook
rinpol	655.00	NIST Webbook
rinpol	657.00	NIST Webbook
rinpol	660.00	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	640.00	NIST Webbook
rinpol	639.70	NIST Webbook
rinpol	656.00	NIST Webbook
rinpol	648.00	NIST Webbook
rinpol	637.00	NIST Webbook
rinpol	685.00	NIST Webbook
rinpol	648.50	NIST Webbook
rinpol	653.60	NIST Webbook
rinpol	646.60	NIST Webbook
rinpol	681.00	NIST Webbook
rinpol	634.00	NIST Webbook
rinpol	640.00	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	649.00	NIST Webbook
rinpol	680.00	NIST Webbook
rinpol	686.00	NIST Webbook
rinpol	694.00	NIST Webbook
rinpol	681.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	655.00	NIST Webbook
rinpol	660.00	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	631.00	NIST Webbook
rinpol	632.00	NIST Webbook
rinpol	634.00	NIST Webbook
rinpol	643.00	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	691.00	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	642.00	NIST Webbook
rinpol	665.00	NIST Webbook
rinpol	647.00	NIST Webbook
rinpol	667.00	NIST Webbook
rinpol	664.00	NIST Webbook
rinpol	629.00	NIST Webbook
rinpol	649.70	NIST Webbook
rinpol	649.00	NIST Webbook
Пірог	0.0.00	THE TWO DOOR

	004.00	NIOTIVII
rinpol	681.30	NIST Webbook
rinpol	661.60	NIST Webbook
rinpol	652.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	654.00	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	647.50	NIST Webbook
rinpol	648.00	NIST Webbook
rinpol	638.32	NIST Webbook
rinpol	638.98	NIST Webbook
rinpol	654.80	NIST Webbook
rinpol	653.80	NIST Webbook
rinpol	654.20	NIST Webbook
rinpol	654.80	NIST Webbook
rinpol	656.10	NIST Webbook
rinpol	660.60	NIST Webbook
rinpol	648.00	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	639.00	NIST Webbook
rinpol	664.00	NIST Webbook
rinpol	654.10	NIST Webbook
rinpol	638.60	NIST Webbook
rinpol	640.70	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	646.00	NIST Webbook
rinpol	643.10	NIST Webbook
rinpol	640.50	NIST Webbook
rinpol	660.10	NIST Webbook
rinpol	654.20	NIST Webbook
rinpol	654.80	NIST Webbook
rinpol	656.10	NIST Webbook
rinpol	654.80	NIST Webbook
rinpol	653.80	NIST Webbook
rinpol	641.77	NIST Webbook
rinpol	641.83	NIST Webbook
rinpol	630.00	NIST Webbook
rinpol	644.00	NIST Webbook
rinpol	654.00	NIST Webbook
rinpol	641.72	NIST Webbook
rinpol	642.00	NIST Webbook
mipor	0.2.00	THE PRODUCTION

rinnal	642.00	NIST Webbook
rinpol	642.00	
rinpol	654.00	NIST Webbook
rinpol	651.40	NIST Webbook
rinpol	648.90	NIST Webbook
rinpol	648.00	NIST Webbook
rinpol	640.61	NIST Webbook
rinpol	643.07	NIST Webbook
rinpol	644.46	NIST Webbook
rinpol	655.57	NIST Webbook
rinpol	658.13	NIST Webbook
rinpol	659.63	NIST Webbook
rinpol	654.00	NIST Webbook
rinpol	645.26	NIST Webbook
rinpol	642.70	NIST Webbook
rinpol	646.00	NIST Webbook
rinpol	647.11	NIST Webbook
rinpol	642.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	648.00	NIST Webbook
rinpol	659.00	NIST Webbook
rinpol	630.00	NIST Webbook
rinpol	640.20	NIST Webbook
rinpol	654.00	NIST Webbook
rinpol	654.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	657.00	NIST Webbook
rinpol	660.00	NIST Webbook
rinpol	667.00	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	672.00	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	678.00	NIST Webbook
rinpol	654.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	664.00	NIST Webbook
rinpol	670.00	NIST Webbook
rinpol	670.00	NIST Webbook
rinpol	656.00	NIST Webbook
mipor	000.00	THE PRODUCT

rinnal	657.00	NIST Webbook
rinpol rinpol	657.00 658.00	NIST Webbook
	659.00	NIST Webbook
rinpol		
rinpol	654.00	NIST Webbook
rinpol	655.00	NIST Webbook
rinpol	655.00	NIST Webbook
rinpol	638.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	655.00	NIST Webbook
rinpol	670.00	NIST Webbook
rinpol	652.00	NIST Webbook
rinpol	638.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	682.00	NIST Webbook
rinpol	635.00	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	655.00	NIST Webbook
rinpol	654.00	NIST Webbook
rinpol	660.00	NIST Webbook
rinpol	649.00	NIST Webbook
ripol	971.57	NIST Webbook
ripol	954.00	NIST Webbook
ripol	979.00	NIST Webbook
ripol	979.40	NIST Webbook
ripol	988.60	NIST Webbook
ripol	999.50	NIST Webbook
ripol	947.77	NIST Webbook
ripol	937.00	NIST Webbook
ripol	934.00	NIST Webbook
ripol	957.00	NIST Webbook
ripol	936.00	NIST Webbook
ripol	948.00	NIST Webbook
ripol	965.00	NIST Webbook
ripol	959.00	NIST Webbook
ripol	935.00	NIST Webbook
ripol	937.00	NIST Webbook
ripol	937.00	NIST Webbook
ripol	950.00	NIST Webbook
ripol	947.00	NIST Webbook
ripol	954.00	NIST Webbook
ripol	947.00	NIST Webbook
ripol	979.00	NIST Webbook
ripol	924.00	NIST Webbook
ripol	938.00	NIST Webbook
Прог	000.00	THE P WODDOOK

win al	020.00	NICT Wake ale
ripol	936.00 951.00	NIST Webbook NIST Webbook
ripol	936.00	NIST Webbook
ripol		
ripol	938.00	NIST Webbook
ripol	937.00	NIST Webbook
ripol · ·	938.00	NIST Webbook
ripol · ·	937.00	NIST Webbook
ripol	937.00	NIST Webbook
ripol	930.00	NIST Webbook
ripol	938.00	NIST Webbook
ripol	932.00	NIST Webbook
ripol	934.00	NIST Webbook
ripol	983.00	NIST Webbook
ripol	957.00	NIST Webbook
ripol	955.00	NIST Webbook
ripol	937.00	NIST Webbook
ripol	957.00	NIST Webbook
ripol	933.00	NIST Webbook
ripol	952.00	NIST Webbook
ripol	947.00	NIST Webbook
ripol	965.00	NIST Webbook
ripol	960.00	NIST Webbook
ripol	959.00	NIST Webbook
ripol	965.00	NIST Webbook
ripol	956.00	NIST Webbook
ripol	994.00	NIST Webbook
ripol	982.00	NIST Webbook
ripol	953.66	NIST Webbook
ripol	975.00	NIST Webbook
ripol	930.00	NIST Webbook
ripol	938.00	NIST Webbook
ripol	938.00	NIST Webbook
ripol	938.00	NIST Webbook
ripol	936.00	NIST Webbook
ripol	965.00	NIST Webbook
ripol	926.00	NIST Webbook
ripol	938.00	NIST Webbook
ripol	947.00	NIST Webbook
ripol	940.00	NIST Webbook
ripol	938.00	NIST Webbook
ripol	963.67	NIST Webbook
ripol	947.00	NIST Webbook
ripol	943.00	NIST Webbook
ripol	942.00	NIST Webbook
	0.2.00	

uin a l	0.40,00	NICT Walk and
ripol	940.00	NIST Webbook NIST Webbook
ripol	967.70	NIST Webbook NIST Webbook
ripol		
ripol	953.00	NIST Webbook
ripol	947.00	NIST Webbook
ripol · ·	924.00	NIST Webbook
ripol	967.00	NIST Webbook
ripol	987.00	NIST Webbook
ripol	981.00	NIST Webbook
ripol	974.00	NIST Webbook
ripol	985.00	NIST Webbook
ripol	970.00	NIST Webbook
ripol	1000.00	NIST Webbook
ripol	991.00	NIST Webbook
ripol	1005.00	NIST Webbook
ripol	978.00	NIST Webbook
ripol	987.00	NIST Webbook
ripol	933.40	NIST Webbook
ripol	947.20	NIST Webbook
ripol	985.70	NIST Webbook
ripol	973.40	NIST Webbook
ripol	972.60	NIST Webbook
ripol	967.00	NIST Webbook
ripol	955.00	NIST Webbook
ripol	959.00	NIST Webbook
ripol	992.60	NIST Webbook
ripol	983.40	NIST Webbook
ripol	978.80	NIST Webbook
ripol	974.20	NIST Webbook
ripol	969.70	NIST Webbook
ripol	982.60	NIST Webbook
ripol	979.30	NIST Webbook
ripol	973.30	NIST Webbook
ripol	965.70	NIST Webbook
ripol	954.50	NIST Webbook
ripol	979.00	NIST Webbook
ripol	964.88	NIST Webbook
ripol	960.69	NIST Webbook
ripol	957.21	NIST Webbook
ripol	976.91	NIST Webbook
ripol	972.80	NIST Webbook
ripol	968.66	NIST Webbook
ripol	971.00	NIST Webbook
ripol	952.00	NIST Webbook
	002.00	THE PRODUCTION

ripol	992.00		NIST Webbook
ripol	964.00		NIST Webbook
ripol	959.50		NIST Webbook
ripol	958.20		NIST Webbook
ripol	945.20		NIST Webbook
ripol	955.50		NIST Webbook
ripol	925.00		NIST Webbook
ripol	971.00		NIST Webbook
ripol	970.00		NIST Webbook
ripol	1007.64		NIST Webbook
ripol	998.62		NIST Webbook
ripol	989.54		NIST Webbook
ripol	980.53		NIST Webbook
ripol	939.00		NIST Webbook
sl	173.26	J/mol×K	NIST Webbook
sl	175.30	J/mol×K	NIST Webbook
SS	45.56	J/mol×K	NIST Webbook
tb	353.26	К	Isobaric vapor-liquid equilibrium for binary system of cinnamaldehyde + benzaldehyde at 10, 20 and 30 kPa
tb	353.16	К	Isobaric vapor liquid equilibrium for methyltrichlorosilane dimethyldichlorosilane benzene system
tb	353.30	К	Isobaric vapor-liquid equilibrium for the binary mixtures of nonane with cyclohexane, toluene, m-xylene, or p-xylene at 101.3 kPa
tb	353.30	K	Isobaric vapor-liquid equilibrium for binary systemsof toluene + o-xylene, benzene + o-xylene, nonane + benzene and nonane + heptane at 101.3 kPa
tb	353.24	K	KDB
tb	353.25	К	Vapor-Liquid Equilibrium for Binary Systems of Allyl Alcohol + Water and Allyl Alcohol + Benzene at 101.3 kPa
tb	353.27	К	Isobaric Vapor Liquid Equilibrium for Binary and Ternary Systems of Isoamyl Alcohol + Isoamyl Acetate + Dimethyl Sulfoxide at 101.33 kPa

tb	353.25	К	Vapor Liquid Equilibrium Data for Binary Systems of N,N-Dimethylacetamide with Cyclohexene, Cyclohexane, and Benzene Separately at Atmospheric Pressure
tb	353.15	К	Excess volumes, densities, speeds of sound and viscosities for the binary systems of diisopropyl ether with hydrocarbons at 303.15K
tb	353.00	К	Phase diagrams of (vapour + liquid) equilibrium for binary mixtures of a,a,a-trifluorotoluene with ethanol, or benzene, or chloroform at pressure 101.4 kPa
tb	353.15	К	Phase equilibria of three binary systems containing 2,5-dimethylthiophene and 2-ethylthiophene in hydrocarbons
tb	353.16	K	Vapor-Liquid Equilibria of the Binary System 1-Pentanol + Anisole and the Quaternary System Benzene+Cyclohexane+1-Pentanol+Aniso at 101.32 kPa
tc	561.86 ± 0.20	K	NIST Webbook
tc tc	561.86 ± 0.20 562.70 ± 0.60	K K	NIST Webbook NIST Webbook
tc	562.70 ± 0.60	K	NIST Webbook
tc tc	562.70 ± 0.60 564.40 ± 2.00	K K	NIST Webbook NIST Webbook
tc tc	562.70 ± 0.60 564.40 ± 2.00 562.09 ± 0.20	К К К	NIST Webbook NIST Webbook NIST Webbook
tc tc tc tc	562.70 ± 0.60 564.40 ± 2.00 562.09 ± 0.20 561.65 ± 0.30	К К К	NIST Webbook NIST Webbook NIST Webbook NIST Webbook
tc tc tc tc tc	562.70 ± 0.60 564.40 ± 2.00 562.09 ± 0.20 561.65 ± 0.30 561.70 ± 0.50	К К К К	NIST Webbook NIST Webbook NIST Webbook NIST Webbook NIST Webbook
tc tc tc tc tc tc	562.70 ± 0.60 564.40 ± 2.00 562.09 ± 0.20 561.65 ± 0.30 561.70 ± 0.50 563.20 ± 1.50	K K K K	NIST Webbook NIST Webbook NIST Webbook NIST Webbook NIST Webbook NIST Webbook
tc tc tc tc tc tc tc	562.70 ± 0.60 564.40 ± 2.00 562.09 ± 0.20 561.65 ± 0.30 561.70 ± 0.50 563.20 ± 1.50 562.00 ± 0.20	K K K K K	NIST Webbook
tc tc tc tc tc tc tc tc tc	562.70 ± 0.60 564.40 ± 2.00 562.09 ± 0.20 561.65 ± 0.30 561.70 ± 0.50 563.20 ± 1.50 562.00 ± 0.20 561.85 ± 0.10	K K K K K K	NIST Webbook
tc	562.70 ± 0.60 564.40 ± 2.00 562.09 ± 0.20 561.65 ± 0.30 561.70 ± 0.50 563.20 ± 1.50 562.00 ± 0.20 561.85 ± 0.10 562.59 ± 2.22	K K K K K K	NIST Webbook
tc	562.70 ± 0.60 564.40 ± 2.00 562.09 ± 0.20 561.65 ± 0.30 561.70 ± 0.50 563.20 ± 1.50 562.00 ± 0.20 561.85 ± 0.10 562.59 ± 2.22 562.09 ± 0.15	K K K K K K K	NIST Webbook
tc t	562.70 ± 0.60 564.40 ± 2.00 562.09 ± 0.20 561.65 ± 0.30 561.70 ± 0.50 563.20 ± 1.50 562.00 ± 0.20 561.85 ± 0.10 562.59 ± 2.22 562.09 ± 0.15 561.99 ± 0.10	K K K K K K K K	NIST Webbook
tc t	562.70 ± 0.60 564.40 ± 2.00 562.09 ± 0.20 561.65 ± 0.30 561.70 ± 0.50 563.20 ± 1.50 562.00 ± 0.20 561.85 ± 0.10 562.59 ± 2.22 562.09 ± 0.15 561.99 ± 0.10 561.70 ± 0.50	K K K K K K K K	NIST Webbook
tc t	562.70 ± 0.60 564.40 ± 2.00 562.09 ± 0.20 561.65 ± 0.30 561.70 ± 0.50 563.20 ± 1.50 562.00 ± 0.20 561.85 ± 0.10 562.59 ± 2.22 562.09 ± 0.15 561.70 ± 0.50 564.00 ± 2.00	K K K K K K K K K	NIST Webbook
tc t	562.70 ± 0.60 564.40 ± 2.00 562.09 ± 0.20 561.65 ± 0.30 561.70 ± 0.50 563.20 ± 1.50 562.00 ± 0.20 561.85 ± 0.10 562.59 ± 2.22 562.09 ± 0.15 561.99 ± 0.10 561.70 ± 0.50 564.00 ± 2.00 562.00 ± 1.00	K K K K K K K K K	NIST Webbook
tc t	562.70 ± 0.60 564.40 ± 2.00 562.09 ± 0.20 561.65 ± 0.30 561.70 ± 0.50 563.20 ± 1.50 562.00 ± 0.20 561.85 ± 0.10 562.59 ± 2.22 562.09 ± 0.15 561.99 ± 0.10 561.70 ± 0.50 562.00 ± 1.00 562.00 ± 1.00	K K K K K K K K K K K K K K K K K K K	NIST Webbook
tc t	562.70 ± 0.60 564.40 ± 2.00 562.09 ± 0.20 561.65 ± 0.30 561.70 ± 0.50 563.20 ± 1.50 562.00 ± 0.20 561.85 ± 0.10 562.59 ± 2.22 562.09 ± 0.15 561.99 ± 0.10 561.70 ± 0.50 564.00 ± 2.00 561.70 ± 0.60 562.10 ± 0.30	K K K K K K K K K K K K K K K K K K K	NIST Webbook
tc t	562.70 ± 0.60 564.40 ± 2.00 562.09 ± 0.20 561.65 ± 0.30 561.70 ± 0.50 563.20 ± 1.50 562.00 ± 0.20 561.85 ± 0.10 562.59 ± 2.22 562.09 ± 0.15 561.70 ± 0.50 564.00 ± 2.00 564.00 ± 2.00 561.70 ± 0.60 562.10 ± 0.30	K K K K K K K K K K K K K K K K K K K	NIST Webbook

tc	563.30 ± 0.50	K	NIST Webbook
tc	562.60 ± 0.60	K	NIST Webbook
tc	562.00 ± 0.05	K	NIST Webbook
tc	562.17 ± 0.20	K	NIST Webbook
tc	562.10	K	NIST Webbook
tc	562.16 ± 0.05	K	NIST Webbook
tc	561.71 ± 0.40	K	NIST Webbook
tc	562.36 ± 0.40	K	NIST Webbook
tc	562.20 ± 0.20	K	NIST Webbook
tc	561.80 ± 0.40	K	NIST Webbook
tc	562.05 ± 0.07	K	NIST Webbook
tc	562.20	K	The Critical Temperatures of a Number of (i) (Chloroalkane (C3 C4) + Hydrocarbon (C6 C7)) Binary Mixtures and (ii) (Aromatic Halocarbon (Chlorobenzene, Fluorobenzene, 1,2-Dichlorobenzene, or 1,3-Dichlorobenzene) + Alkane (C8)) Binary Mixtures
tc	562.05	K	KDB
tc	561.55 ± 4.00	K	NIST Webbook
tc	563.70 ± 1.50	K	NIST Webbook
tc	569.60 ± 8.00	K	NIST Webbook
tc	562.05 ± 0.02	K	NIST Webbook
tc	561.30 ± 1.00	K	NIST Webbook
tc	561.65 ± 0.40	K	NIST Webbook
tc	564.90 ± 4.00	K	NIST Webbook
tc	562.15 ± 0.20	K	NIST Webbook
tc	561.83 ± 0.40	K	NIST Webbook
tf	278.68	K	KDB
tf	278.66	К	Aqueous Solubility Prediction Method
tf	279.05	K	Influence of High Pressure on the Liquidus Curve Shape in Binary Hydrocarbon Mixtures: Experimental Data, Correlation, and Prediction
tf	278.95	K	Solid-Liquid Equilibria for Binary Organic Systems Containing 1-Methoxy-2-propanol and 2-Butoxy Ethanol
tf	278.29	K	Phase Equilibria Study of the Binary Systems (N-Butyl-4-methylpyridinium Tosylate Ionic Liquid + Organic Solvent, or Water)
tf	278.67 ± 0.01	K	NIST Webbook

	070.05	14	NIOTIVILL
tf	278.65 ± 0.20	K	NIST Webbook
tf	278.64 ± 0.02	K	NIST Webbook
tf	278.45 ± 0.40	K	NIST Webbook
tf	278.60 ± 0.03	K	NIST Webbook
tf	278.63 ± 0.08	K	NIST Webbook
tf	278.70 ± 0.60	K	NIST Webbook
tf	278.70 ± 1.00	K	NIST Webbook
tf	278.63 ± 0.05	K	NIST Webbook
tf	277.00 ± 2.00	K	NIST Webbook
tf	278.58 ± 0.05	K	NIST Webbook
tf	278.55 ± 0.10	K	NIST Webbook
tf	278.63 ± 0.07	K	NIST Webbook
tf	278.63 ± 0.30	K	NIST Webbook
tf	278.63 ± 0.10	K	NIST Webbook
tf	278.25 ± 0.30	K	NIST Webbook
tf	278.60 ± 0.80	K	NIST Webbook
tf	278.58 ± 0.25	K	NIST Webbook
tf	278.63 ± 0.05	K	NIST Webbook
tf	278.63 ± 0.06	K	NIST Webbook
tf	278.64 ± 0.07	K	NIST Webbook
tf	278.55 ± 0.20	K	NIST Webbook
tf	278.55 ± 0.20	K	NIST Webbook
tf	278.60 ± 0.25	K	NIST Webbook
tf	278.70 ± 0.15	K	NIST Webbook
tf	278.70 ± 0.15	K	NIST Webbook
tf	278.65 ± 0.30	K	NIST Webbook
tf	278.70 ± 0.40	K	NIST Webbook
tf	278.55 ± 0.20	K	NIST Webbook
tf	551.90 ± 0.20	K	NIST Webbook
tf	279.10 ± 1.00	K	NIST Webbook
tf	278.66 ± 0.04	K	NIST Webbook
tf	278.66 ± 0.05	K	NIST Webbook
tf	278.64 ± 0.05	K	NIST Webbook
tf	278.66 ± 0.06	K	NIST Webbook
tf	278.67 ± 0.10	K	NIST Webbook
tf	279.00 ± 0.20	K	NIST Webbook
tf	278.66 ± 0.01	K	NIST Webbook
tf	278.68 ± 0.10	K	NIST Webbook
tf	278.80 ± 0.20	K	NIST Webbook
tf	278.63 ± 0.05	K	NIST Webbook
tf	278.71 ± 0.05	K	NIST Webbook
tf	278.75 ± 0.40	K	NIST Webbook
tf	278.66 ± 0.10	K	NIST Webbook
tf	278.66 ± 0.05	K	NIST Webbook

tf 278.65 ± 0.30 K NIST Webbook tf 278.65 ± 0.30 K NIST Webbook tf 278.40 ± 0.60 K NIST Webbook tf 278.68 ± 0.05 K NIST Webbook tf 278.61 ± 0.10 K NIST Webbook tf 278.58 ± 0.20 K NIST Webbook tf 278.63 ± 0.10 K NIST Webbook tf 278.49 ± 0.20 K NIST Webbook tf 278.70 ± 0.20 K NIST Webbook tf 278.65 ± 0.30 K NIST Webbook tf 278.70 ± 0.20 K NIST Webbook	tf	5.45 ± 0.10	K	NIST Webbook
tf 278.40 ± 0.60 K NIST Webbook tf 278.68 ± 0.05 K NIST Webbook tf 278.61 ± 0.10 K NIST Webbook tf 278.58 ± 0.20 K NIST Webbook tf 278.63 ± 0.10 K NIST Webbook tf 278.49 ± 0.20 K NIST Webbook tf 278.70 ± 0.20 K NIST Webbook tf 278.65 ± 0.30 K NIST Webbook	tf	278.65 ± 0.30	K	NIST Webbook
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tf	278.65 ± 0.30	K	NIST Webbook
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tf	278.40 ± 0.60	K	NIST Webbook
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tf	278.68 ± 0.05	K	NIST Webbook
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tf	278.61 ± 0.10	K	NIST Webbook
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tf	278.58 ± 0.20	K	NIST Webbook
tf 278.70 ± 0.20 K NIST Webbook tf 278.65 ± 0.30 K NIST Webbook	tf	278.63 ± 0.10	K	NIST Webbook
tf 278.65 ± 0.30 K NIST Webbook	tf	278.49 ± 0.20	K	NIST Webbook
	tf	278.70 ± 0.20	K	NIST Webbook
tf 278.70 ± 0.20 K NIST Webbook	tf	278.65 ± 0.30	K	NIST Webbook
	tf	278.70 ± 0.20	K	NIST Webbook
tf 278.66 ± 0.10 K NIST Webbook	tf	278.66 ± 0.10	K	NIST Webbook
tf 280.00 ± 0.10 K NIST Webbook	tf	280.00 ± 0.10	K	NIST Webbook
tf 278.64 ± 0.10 K NIST Webbook	tf	278.64 ± 0.10	K	NIST Webbook
tf 278.65 ± 0.01 K NIST Webbook	tf	278.65 ± 0.01	K	NIST Webbook
tf 278.65 ± 0.10 K NIST Webbook	tf	278.65 ± 0.10	K	NIST Webbook
tf 278.59 ± 0.08 K NIST Webbook	tf	278.59 ± 0.08	K	NIST Webbook
tf 278.64 ± 0.10 K NIST Webbook	tf	278.64 ± 0.10	K	NIST Webbook
tf 278.65 ± 0.20 K NIST Webbook	tf	278.65 ± 0.20	K	NIST Webbook
tf 278.62 ± 0.10 K NIST Webbook	tf	278.62 ± 0.10	K	NIST Webbook
tf 267.65 ± 1.50 K NIST Webbook	tf	267.65 ± 1.50	K	NIST Webbook
tf 278.66 ± 0.02 K NIST Webbook	tf	278.66 ± 0.02	K	NIST Webbook
tf 278.65 ± 0.30 K NIST Webbook	tf	278.65 ± 0.30	K	NIST Webbook
vc 0.256 m3/kmol KDB	VC	0.256	m3/kmol	KDB
with 2-Methylnaphthalene	vols	0.00	m3/kg	Binary Mixtures of Indole with 2-Methylnaphthalene and Biphenyl at 333.15 K and Pressures up to 270
zc 0.2681520 KDB	ZC	0.2681520		KDB
zra 0.27 KDB	zra	0.27		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	113.93	J/mol×K	402.30	NIST Webbook
cpg	131.40 ± 1.30	J/mol×K	481.00	NIST Webbook
cpg	132.94 ± 0.08	J/mol×K	473.15	NIST Webbook
cpg	132.42	J/mol×K	471.10	NIST Webbook
cpg	126.80 ± 1.30	J/mol×K	463.00	NIST Webbook
cpg	123.93 ± 0.07	J/mol×K	438.15	NIST Webbook

cpg	123.39	J/mol×K	436.15	NIST Webbook	
cpg	118.80 ± 1.30	J/mol×K	428.00	NIST Webbook	
cpg	117.60 ± 1.30	J/mol×K	417.00	NIST Webbook	
cpg	115.48	J/mol×K	410.00	NIST Webbook	
cpg	114.29 ± 0.07	J/mol×K	403.15	NIST Webbook	
cpg	110.50 ± 1.30	J/mol×K	393.00	NIST Webbook	
cpg	110.88	J/mol×K	390.00	NIST Webbook	
cpg	108.80 ± 1.30	J/mol×K	388.00	NIST Webbook	
cpg	104.77	J/mol×K	371.20	NIST Webbook	
cpg	105.02	J/mol×K	370.00	NIST Webbook	
cpg	103.98 ± 0.06	J/mol×K	368.15	NIST Webbook	
cpg	145.59 ± 0.09	J/mol×K	527.15	NIST Webbook	
cpg	97.99 ± 0.06	J/mol×K	348.15	NIST Webbook	
cpg	95.81	J/mol×K	341.60	NIST Webbook	
cpg	139.47 ± 0.08	J/mol×K	500.15	NIST Webbook	
cpg	93.32 ± 0.06	J/mol×K	333.15	NIST Webbook	
cpl	136.50	J/mol×K	300.00	NIST Webbook	
cpl	137.90	J/mol×K	310.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
срІ	139.20	J/mol×K	315.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	140.85	J/mol×K	320.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
срІ	142.50	J/mol×K	325.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
срІ	144.15	J/mol×K	330.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
срІ	136.50	J/mol×K	305.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	131.40	J/mol×K	287.80	NIST Webbook	

cpl	145.80	J/mol×K	335.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	147.55	J/mol×K	340.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	149.30	J/mol×K	345.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	151.20	J/mol×K	350.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	133.63	J/mol×K	293.15 1-E	Excess Heat Capacities of Binary and Ternary Mixtures Containing Ethyl-3-methylimidazo Tetrafluoroborate and Anilines	lium
cpl	135.32	J/mol×K	298.15 1-E	Excess Heat Capacities of Binary and Ternary Mixtures Containing Ethyl-3-methylimidazo Tetrafluoroborate and Anilines	lium
cpl	136.62	J/mol×K	303.15 1-E	Excess Heat Capacities of Binary and Ternary Mixtures Containing Ethyl-3-methylimidazo Tetrafluoroborate and Anilines	lium
cpl	135.69	J/mol×K	298.15	NIST Webbook	
cpl	135.90	J/mol×K	298.50	NIST Webbook	
cpl	135.62	J/mol×K	298.15	NIST Webbook	
cpl	134.63	J/mol×K	298.15	NIST Webbook	
cpl	135.75	J/mol×K	298.15	NIST Webbook	
cpl	134.61	J/mol×K	293.15	NIST Webbook	
cpl	135.71	J/mol×K	298.15	NIST Webbook	
cpl	139.90	J/mol×K	322.05	NIST Webbook	
cpl	137.40	J/mol×K	303.15	NIST Webbook	
cpl	136.06	J/mol×K	298.15	NIST Webbook	

cpl	135.72	J/mol×K	298.15	NIST Webbook	
cpl	136.24	J/mol×K	298.15	NIST Webbook	
cpl	133.50	J/mol×K	298.00	NIST Webbook	
cpl	137.20	J/mol×K	298.00	NIST Webbook	
cpl	133.90	J/mol×K	303.00	NIST Webbook	_
cpl	133.10	J/mol×K	293.20	NIST Webbook	
cpl	132.20	J/mol×K	298.00	NIST Webbook	
cpl	135.10	J/mol×K	300.00	NIST Webbook	
cpl	143.57	J/mol×K	323.15	NIST Webbook	
cpl	135.10	J/mol×K	298.10	NIST Webbook	
cpl	131.40	J/mol×K	298.15	NIST Webbook	
cpl	135.40	J/mol×K	300.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	131.40	J/mol×K	287.80	NIST Webbook	
cpl	135.44	J/mol×K	298.20	NIST Webbook	
cpl	136.00	J/mol×K	298.10	NIST Webbook	
cpl	133.50	J/mol×K	298.00	NIST Webbook	
cpl	119.00	J/mol×K	295.00	NIST Webbook	
cpl	136.06	J/mol×K	298.15	NIST Webbook	
cpl	31.80	J/mol×K	293.00	NIST Webbook	
cpl	135.23	J/mol×K	298.00	NIST Webbook	
cpl	136.40	J/mol×K	303.00	NIST Webbook	
cpl	135.10	J/mol×K	316.00	NIST Webbook	
cpl	134.80	J/mol×K	295.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	135.30	J/mol×K	300.00	NIST Webbook	
cpl	134.60	J/mol×K	293.00	NIST Webbook	
cpl	130.00	J/mol×K	298.00	NIST Webbook	
cpl	135.40	J/mol×K	298.00	NIST Webbook	
cpl	135.90	J/mol×K	298.00	NIST Webbook	
cpl	135.90	J/mol×K	298.15	NIST Webbook	
cpl	134.30	J/mol×K	298.00	NIST Webbook	
cpl	135.70	J/mol×K	298.15	NIST Webbook	
cpl	135.76	J/mol×K	298.15	NIST Webbook	
cpl	135.76	J/mol×K	298.15	NIST Webbook	
cpl	135.60	J/mol×K	298.15	NIST Webbook	
cpl	135.90	J/mol×K	298.15	NIST Webbook	
cpl	135.61	J/mol×K	298.15	NIST Webbook	
cpl	135.90	J/mol×K	298.15	NIST Webbook	
cpl	133.60	J/mol×K	293.15	NIST Webbook	

	405.00	I/m al. IZ	200.45	NUCT Wakkaal	
cpl .	135.60	J/mol×K	298.15	NIST Webbook	
cpl	135.74	J/mol×K	298.15	NIST Webbook	
cpl	135.70	J/mol×K	298.15	NIST Webbook	
cpl	134.98	J/mol×K	298.00	NIST Webbook	
cps	118.40	J/mol×K	273.00	NIST Webbook	
cps	47.86	J/mol×K	90.00	NIST Webbook	
cps	97.90	J/mol×K	223.90	NIST Webbook	
dvisc	0.0004970	Paxs	313.15	Density and Viscosity of Propyl Formate + Aromatic Hydrocarbons at T = (303.15, 308.15, and 313.15) K	
dvisc	0.0005340	Pa×s	308.15	Physical Properties of Binary Mixtures of Ethyl Formate with Benzene, Isopropyl Benzene, Isobutyl Benzene, and Butylbenzene at (303.15, 308.15, and 313.15) K	
dvisc	0.0005690	Paxs	303.15	Physical Properties of Binary Mixtures of Ethyl Formate with Benzene, Isopropyl Benzene, Isobutyl Benzene, and Butylbenzene at (303.15, 308.15, and 313.15) K	
dvisc	0.0004660	Paxs	318.15	Densities and Viscosities of Binary Mixtures of Methyl 4-Chlorobutyrate with Aromatic Hydrocarbons at T) (298.15 to 318.15) K	
dvisc	0.0005330	Pa×s	308.15	Densities and Viscosities of Binary Mixtures of Methyl 4-Chlorobutyrate with Aromatic Hydrocarbons at T) (298.15 to 318.15) K	

dvisc	0.0006030	Paxs	298.15	Densities and Viscosities of Binary Mixtures of Methyl 4-Chlorobutyrate with Aromatic Hydrocarbons at T) (298.15 to 318.15) K	
dvisc	0.0003932	Paxs	333.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K	
dvisc	0.0004145	Paxs	328.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K	
dvisc	0.0004397	Paxs	323.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K	
dvisc	0.0004714	Paxs	318.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K	

dvisc	0.0005001	Paxs	313.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K	
dvisc	0.0005232	Paxs	308.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K	
dvisc	0.0005640	Pa×s	303.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K	
dvisc	0.0003540	Paxs	343.15	Densities and Viscosities of N-Formylmorpholine + Benzene, + Toluene at Different Temperatures and Atmospheric Pressures	
dvisc	0.0003890	Paxs	333.15	Densities and Viscosities of N-Formylmorpholine + Benzene, + Toluene at Different Temperatures and Atmospheric Pressures	
dvisc	0.0004360	Paxs	323.15	Densities and Viscosities of N-Formylmorpholine + Benzene, + Toluene at Different Temperatures and Atmospheric Pressures	

dvisc	0.0005620	Paxs	303.15	Densities and Viscosities of N-Formylmorpholine + Benzene, + Toluene at Different Temperatures and Atmospheric Pressures
dvisc	0.0005710	Paxs	303.15	Viscosities, Densities, and Speeds of Sound of Binary Mixtures of Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene with Anisole at (288.15, 293.15, 298.15, and 303.15) K
dvisc	0.0006040	Paxs	298.15	Viscosities, Densities, and Speeds of Sound of Binary Mixtures of Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene with Anisole at (288.15, 293.15, 298.15, and 303.15) K
dvisc	0.0006480	Paxs	293.15	Viscosities, Densities, and Speeds of Sound of Binary Mixtures of Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene with Anisole at (288.15, 293.15, 298.15, and 303.15) K

dvisc	0.0007090	Paxs	288.15	Viscosities, Densities, and Speeds of Sound of Binary Mixtures of Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene with Anisole at (288.15, 293.15, 298.15, and 303.15) K	
dvisc	0.0004362	Paxs	323.15	Excess Molar Volumes and Viscosities of Binary Mixtures of Sulfolane with Benzene, Toluene, Ethylbenzene, p-Xylene, o-Xylene, and m-Xylene at 303.15 and 323.15 K and Atmospheric Pressure	
dvisc	0.0005612	Paxs	303.15	Excess Molar Volumes and Viscosities of Binary Mixtures of Sulfolane with Benzene, Toluene, Ethylbenzene, p-Xylene, o-Xylene, and m-Xylene at 303.15 and 323.15 K and Atmospheric Pressure	
dvisc	0.0006038	Paxs	298.15	Excess Molar Volumes and Viscosities of Binary Mixtures of Sulfolane with Benzene, Toluene, Ethylbenzene, p-Xylene, o-Xylene, and m-Xylene at 303.15 and 323.15 K and Atmospheric Pressure	

dvisc	0.0004970	Paxs	313.15	Physical Properties of Binary Mixtures of Ethyl Formate with Benzene, Isopropyl Benzene, Isobutyl Benzene, and Butylbenzene at (303.15, 308.15, and 313.15) K	
dvisc	0.0005690	Paxs	303.15	Density and Viscosity of Propyl Formate + Aromatic Hydrocarbons at T = (303.15, 308.15, and 313.15) K	
dvisc	0.0005340	Paxs	308.15	Density and Viscosity of Propyl Formate + Aromatic Hydrocarbons at T = (303.15, 308.15, and 313.15) K	
dvisc	0.0005260	Paxs	308.15 Cm	Densities, Excess Molar Volumes, Viscosities, Speeds of Sound, Excess Isentropic Compressibilities, and Relative Permittivities for (m) 1 or 2 or 4 andn) 1) + Benzene, + Toluene, + (o-, m-, and p-) Xylenes, + Ethylbenzene, and + Cyclohexane	юOН

dvisc	0.0006020	Paxs	298.15	Densities, Excess Molar Volumes, Viscosities, Speeds of Sound, Excess Isentropic Compressibilities, and Relative Permittivities for CmH2m+1(OCH2CH2)nOH (m) 1 or 2 or 4 andn) 1) + Benzene, + Toluene, + (o-, m-, and p-) Xylenes, + Ethylbenzene, and + Cyclohexane
dvisc	0.0005310	Paxs	308.15	Densities, Viscosities, and Thermodynamic Properties of (N,N-Dimethylformamide + Benzene + Chlorobenzene) Ternary Mixtures at (298.15, 303.15, 308.15, and 313.15) K
dvisc	0.0005680	Paxs	303.15	Densities, Viscosities, and Thermodynamic Properties of (N,N-Dimethylformamide + Benzene + Chlorobenzene) Ternary Mixtures at (298.15, 303.15, 308.15, and 313.15) K
dvisc	0.0006030	Paxs	298.15	Densities, Viscosities, and Thermodynamic Properties of (N,N-Dimethylformamide + Benzene + Chlorobenzene) Ternary Mixtures at (298.15, 303.15, 308.15, and 313.15) K
dvisc	0.0006010	Paxs	298.15	Densities and Viscosities of N-Formylmorpholine + Benzene, + Toluene at Different Temperatures and Atmospheric Pressures

dvisc	0.0004360	Paxs	323.15	Densities, viscosities, and excess properties of (N-methylmorpholine + cyclohexane, + benzene, and + toluene) at T = (298.15, 303.15, 313.15, 323.15) K
dvisc	0.0004940	Paxs	313.15	Densities, viscosities, and excess properties of (N-methylmorpholine + cyclohexane, + benzene, and + toluene) at T = (298.15, 303.15, 313.15, 323.15) K
dvisc	0.0004942	Paxs	313.15	Viscometric and Volumetric Properties of 10 Regular Binary Systems at 308.15 K and 313.15 K
dvisc	0.0005630	Paxs	303.15	Densities, viscosities, and excess properties of (N-methylmorpholine + cyclohexane, + benzene, and + toluene) at T = (298.15, 303.15, 313.15, 323.15) K
dvisc	0.0006010	Paxs	298.15	Densities, viscosities, and excess properties of (N-methylmorpholine + cyclohexane, + benzene, and + toluene) at T = (298.15, 303.15, 313.15, 323.15) K
dvisc	0.0003450	Paxs	343.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure

dvisc	0.0003880	Paxs	333.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure
dvisc	0.0004360	Paxs	323.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure
dvisc	0.0004930	Paxs	313.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure
dvisc	0.0005610	Paxs	303.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure
dvisc	0.0004670	Paxs	318.15	Ultrasonic and viscometric study of molecular interactions in binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl-2-propanol at different temperatures

dvisc	0.0005395	Paxs	308.15	Ultrasonic and viscometric study of molecular interactions in binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl-2-propanol at different temperatures	
dvisc	0.0006025	Paxs	298.15	Ultrasonic and viscometric study of molecular interactions in binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl-2-propanol at different temperatures	
dvisc	0.0005000	Paxs	313.15	Densities, Viscosities, and Thermodynamic Properties of (N,N-Dimethylformamide + Benzene + Chlorobenzene) Ternary Mixtures at (298.15, 303.15, 308.15, and 313.15) K	
dvisc	0.0005272	Paxs	308.15	Viscometric and Volumetric Properties of 10 Regular Binary Systems at 308.15 K and 313.15 K	
dvisc	0.0004930	Paxs	313.15	Densities and Viscosities of N-Formylmorpholine + Benzene, + Toluene at Different Temperatures and Atmospheric Pressures	
hfust	9.87	kJ/mol	278.69	NIST Webbook	_
hfust	9.87	kJ/mol	278.70	NIST Webbook	_
hfust	9.30	kJ/mol	279.10	NIST Webbook	_
hfust	8.95	kJ/mol	278.80	NIST Webbook	_
hfust	9.94	kJ/mol	278.60	NIST Webbook	_
hfust	9.80	kJ/mol	278.60	NIST Webbook	_
hfust	9.88	kJ/mol	278.55	NIST Webbook	_
hfust	10.00	kJ/mol	278.64	NIST Webbook	_
		2, 2 ,			

hfust	9.92	kJ/mol	278.65	NIST Webbook	
hsubt	45.10	kJ/mol	278.00	NIST Webbook	
hsubt	53.90 ± 0.80	kJ/mol	193.00	NIST Webbook	
hsubt	41.70	kJ/mol	265.50	NIST Webbook	
hsubt	49.40 ± 0.40	kJ/mol	193.00	NIST Webbook	
hsubt	45.20	kJ/mol	251.00	NIST Webbook	
hsubt	45.60	kJ/mol	244.50	NIST Webbook	
hsubt	44.10	kJ/mol	261.00	NIST Webbook	
hsubt	43.10	kJ/mol	229.00	NIST Webbook	
hsubt	44.60	kJ/mol	279.00	NIST Webbook	
hsubt	46.60	kJ/mol	266.50	NIST Webbook	_
hsubt	38.00	kJ/mol	303.00	NIST Webbook	
hsubt	44.60	kJ/mol	273.00	NIST Webbook	_
hsubt	43.30	kJ/mol	226.00	NIST Webbook	
hvapt	31.50	kJ/mol	387.50	NIST Webbook	
hvapt	31.40 ± 0.10	kJ/mol	343.00	NIST Webbook	
hvapt	31.80 ± 0.10	kJ/mol	333.00	NIST Webbook	
hvapt	32.20 ± 0.10	kJ/mol	328.00	NIST Webbook	
hvapt	30.90 ± 0.10	kJ/mol	353.00	NIST Webbook	
hvapt	33.00 ± 0.10	kJ/mol	313.00	NIST Webbook	
hvapt	32.60 ± 0.40	kJ/mol	313.00	NIST Webbook	
hvapt	30.20	kJ/mol	366.00	NIST Webbook	
hvapt	30.50	kJ/mol	361.00	NIST Webbook	
hvapt	30.80	kJ/mol	352.00	NIST Webbook	
hvapt	30.30	kJ/mol	531.50	NIST Webbook	
hvapt	30.20	kJ/mol	461.00	NIST Webbook	
hvapt	32.50 ± 0.50	kJ/mol	328.00	NIST Webbook	
hvapt	31.00	kJ/mol	350.00	NIST Webbook	
hvapt	31.60 ± 0.40	kJ/mol	345.00	NIST Webbook	
hvapt	34.10	kJ/mol	319.00	NIST Webbook	
hvapt	34.10	kJ/mol	293.00	NIST Webbook	
hvapt	34.10	kJ/mol	318.00	NIST Webbook	
hvapt	31.20	kJ/mol	294.00	NIST Webbook	
hvapt	34.10	kJ/mol	321.00	NIST Webbook	
hvapt	34.40	kJ/mol	328.00	NIST Webbook	
hvapt	35.30	kJ/mol	343.00	NIST Webbook	
hvapt	30.76	kJ/mol	353.30	KDB	
hvapt	33.25	kJ/mol	298.00	Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects	
hvapt	33.40	kJ/mol	335.50	NIST Webbook	
					_

hyapt 33.20						
Nvapt 34.50	hvapt	33.20	kJ/mol	325.00	NIST Webbook	
hvapt 33.40	hvapt	35.60	kJ/mol	285.50	NIST Webbook	
hvapt 33.10	hvapt	34.50	kJ/mol	310.50	NIST Webbook	
hvapt 32.40 kJ/mol 324.00 NIST Webbook hvapt 31.90 kJ/mol 332.00 NIST Webbook hvapt 31.40 kJ/mol 344.00 NIST Webbook hvapt 30.60 kJ/mol 353.00 NIST Webbook hvapt 30.60 kJ/mol 336.50 NIST Webbook hvapt 30.72 kJ/mol 353.30 NIST Webbook hvapt 30.72 kJ/mol 353.30 NIST Webbook psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene	hvapt	33.40	kJ/mol	307.00	NIST Webbook	
hvapt 31.90 kJ/mol 332.00 NIST Webbook hvapt 31.40 kJ/mol 344.00 NIST Webbook hvapt 30.60 kJ/mol 335.00 NIST Webbook hvapt 33.50 kJ/mol 353.30 NIST Webbook psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.23 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene	hvapt	33.10	kJ/mol	314.00	NIST Webbook	
hvapt 31.40 kJ/mol 344.00 NIST Webbook hvapt 30.60 kJ/mol 353.00 NIST Webbook hvapt 33.50 kJ/mol 336.50 NIST Webbook hvapt 30.72 kJ/mol 353.30 NIST Webbook psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.23 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene	hvapt	32.40	kJ/mol	324.00	NIST Webbook	
hvapt 30.60 kJ/mol 353.00 NIST Webbook hvapt 33.50 kJ/mol 336.50 NIST Webbook hvapt 30.72 kJ/mol 353.30 NIST Webbook psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.65 kPa 253.17 Recommended sublimation pressure and enthalpy of	hvapt	31.90	kJ/mol	332.00	NIST Webbook	
hvapt 33.50 kJ/mol 336.50 NIST Webbook hvapt 30.72 kJ/mol 353.30 NIST Webbook psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended enthalpy of benzene	hvapt	31.40	kJ/mol	344.00	NIST Webbook	
hvapt 30.72 kJ/mol 353.30 NIST Webbook psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.65 kPa 253.17 Recommended sublimation pressure and enthalpy of benzene	hvapt	30.60	kJ/mol	353.00	NIST Webbook	
psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.65 kPa 253.17 Recommended sublimation pressure and enthalpy of benzene	hvapt	33.50	kJ/mol	336.50	NIST Webbook	
psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.65 kPa 253.17 Recommended sublimation pressure and enthalpy of benzene	hvapt	30.72	kJ/mol	353.30	NIST Webbook	
psub 1.23 kPa 260.68 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.65 kPa 253.17 Recommended sublimation pressure and enthalpy of benzene	psub	1.23	kPa	260.68	sublimation pressure and enthalpy of	
psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.65 kPa 253.17 Recommended sublimation pressure and enthalpy of benzene	psub	1.23	kPa	260.68	sublimation pressure and enthalpy of	
psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.65 kPa 253.17 Recommended sublimation pressure and enthalpy of benzene	psub	1.23	kPa	260.68	sublimation pressure and enthalpy of	
sublimation pressure and enthalpy of benzene psub 1.00 kPa 258.16 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.65 kPa 253.17 Recommended sublimation pressure and enthalpy of benzene	psub	1.00	kPa	258.16	sublimation pressure and enthalpy of	
psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.65 kPa 253.17 Recommended sublimation pressure and enthalpy of benzene	psub	1.00	kPa	258.16	sublimation pressure and enthalpy of	
psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.81 kPa 255.67 Recommended sublimation pressure and enthalpy of benzene psub 0.65 kPa 253.17 Recommended sublimation pressure and enthalpy of enthalpy of	psub	1.00	kPa	258.16	sublimation pressure and enthalpy of	
psub 0.65 kPa 253.17 Recommended sublimation pressure and enthalpy of benzene	psub	0.81	kPa	255.67	sublimation pressure and enthalpy of	
sublimation pressure and enthalpy of	psub	0.81	kPa	255.67	sublimation pressure and enthalpy of	
Denzene	psub	0.65	kPa	253.17	sublimation pressure and	

psub	0.65	kPa	253.17	Recommended sublimation pressure and enthalpy of benzene	
psub	0.65	kPa	253.17	Recommended sublimation pressure and enthalpy of benzene	
psub	0.53	kPa	250.68	Recommended sublimation pressure and enthalpy of benzene	
psub	0.10	kPa	233.20	Recommended sublimation pressure and enthalpy of benzene	
psub	0.10	kPa	233.20	Recommended sublimation pressure and enthalpy of benzene	
psub	0.10	kPa	233.20	Recommended sublimation pressure and enthalpy of benzene	
psub	0.13	kPa	235.70	Recommended sublimation pressure and enthalpy of benzene	
psub	0.13	kPa	235.70	Recommended sublimation pressure and enthalpy of benzene	
psub	0.13	kPa	235.70	Recommended sublimation pressure and enthalpy of benzene	
psub	0.16	kPa	238.21	Recommended sublimation pressure and enthalpy of benzene	
psub	0.16	kPa	238.21	Recommended sublimation pressure and enthalpy of benzene	
psub	0.16	kPa	238.21	Recommended sublimation pressure and enthalpy of benzene	

psub	0.21	kPa	240.70	Recommended sublimation pressure and enthalpy of benzene	
psub	0.21	kPa	240.70	Recommended sublimation pressure and enthalpy of benzene	
psub	0.21	kPa	240.70	Recommended sublimation pressure and enthalpy of benzene	
psub	0.27	kPa	243.20	Recommended sublimation pressure and enthalpy of benzene	
psub	0.27	kPa	243.20	Recommended sublimation pressure and enthalpy of benzene	
psub	0.27	kPa	243.20	Recommended sublimation pressure and enthalpy of benzene	
psub	0.34	kPa	245.68	Recommended sublimation pressure and enthalpy of benzene	
psub	0.34	kPa	245.68	Recommended sublimation pressure and enthalpy of benzene	
psub	0.34	kPa	245.68	Recommended sublimation pressure and enthalpy of benzene	
psub	0.42	kPa	248.18	Recommended sublimation pressure and enthalpy of benzene	
psub	0.42	kPa	248.18	Recommended sublimation pressure and enthalpy of benzene	
psub	0.42	kPa	248.18	Recommended sublimation pressure and enthalpy of benzene	

psub	0.53	kPa	250.68	Recommended sublimation pressure and enthalpy of benzene	
psub	0.53	kPa	250.68	Recommended sublimation pressure and enthalpy of benzene	
psub	0.81	kPa	255.67	Recommended sublimation pressure and enthalpy of benzene	
pvap	12.70	kPa		Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with ethyl-3-butyl-imidazo (trifluoromethyl-sulfo imide	
pvap	15.92	kPa	303.15 1-m bis	Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with ethyl-3-butyl-imidazo (trifluoromethyl-sulfo imide	olium nyl)
pvap	19.66	kPa	308.15 1-m bis	Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with ethyl-3-butyl-imidazo (trifluoromethyl-sulfo imide	olium nyl)

pvap	24.33	kPa		Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with sethyl-3-butyl-imidazolium (trifluoromethyl-sulfonyl) imide	
pvap	40.00	kPa	325.60	Determination and correlation of vapor liquid equilibrium for binary systems consisting of close-boiling components	
pvap	53.33	kPa	333.56	Determination and correlation of vapor liquid equilibrium for binary systems consisting of close-boiling components	
pvap	66.66	kPa	340.06	Determination and correlation of vapor liquid equilibrium for binary systems consisting of close-boiling components	
pvap	79.99	kPa	345.61	Determination and correlation of vapor liquid equilibrium for binary systems consisting of close-boiling components	
pvap	93.32	kPa	350.50	Determination and correlation of vapor liquid equilibrium for binary systems consisting of close-boiling components	

pvap	52.45	kPa	333.15	Vapor liquid equilibria and density measurement for binary mixtures of toluene, benzene, o-xylene, m-xylene, sulfolane and nonane at 333.15K and 353.15K	
pvap	100.00	kPa	353.15	Vapor liquid equilibria and density measurement for binary mixtures of toluene, benzene, o-xylene, m-xylene, sulfolane and nonane at 333.15K and 353.15K	
pvap	101.30	kPa	353.30	Isobaric vapor-liquid equilibrium for the binary mixtures of nonane with cyclohexane, toluene, m-xylene, or p-xylene at 101.3 kPa	
pvap	62.10	kPa	338.15	Phase equilibria and excess molar enthalpies study of the binary systems (pyrrole + hydrocarbon, or an alcohol) and modeling	
pvap	101.33	kPa	353.26	Isobaric vapor-liquid equilibrium for binary system of cinnamaldehyde + benzaldehyde at 10, 20 and 30 kPa	
pvap	9.98	kPa	293.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	

pvap	12.64	kPa	298.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression
pvap	15.85	kPa	303.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression
pvap	36.24	kPa	323.15	Total vapour pressure and excess Gibbs energy for binary mixtures of 1,1,2,2-tetrachlorethane or tetrachloroethene with benzene at nine temperatures
pvap	19.71	kPa	308.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression
pvap	24.30	kPa	313.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression
pvap	29.73	kPa	318.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression

pvap	36.09	kPa	323.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	43.51	kPa	328.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	52.11	kPa	333.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	62.01	kPa	338.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	73.35	kPa	343.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	86.27	kPa	348.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	

pvap	100.91	kPa	353.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	101.33	kPa	353.15	Phase equilibria of three binary systems containing 2,5-dimethylthiophene and 2-ethylthiophene in hydrocarbons	
pvap	205.00	kPa	378.35	Quantitative comparison between predicted and experimental binary n-alkane p benzene phase behaviors using cubic and PC-SAFT EOS	
pvap	366.00	kPa	401.25	Quantitative comparison between predicted and experimental binary n-alkane p benzene phase behaviors using cubic and PC-SAFT EOS	
pvap	572.00	kPa	421.85	Quantitative comparison between predicted and experimental binary n-alkane p benzene phase behaviors using cubic and PC-SAFT EOS	
pvap	778.00	kPa	437.45	Quantitative comparison between predicted and experimental binary n-alkane p benzene phase behaviors using cubic and PC-SAFT EOS	

pvap	1173.00	kPa	460.35	Quantitative comparison between predicted and experimental binary n-alkane p benzene phase behaviors using cubic and PC-SAFT EOS	
pvap	1622.00	kPa	480.45	Quantitative comparison between predicted and experimental binary n-alkane p benzene phase behaviors using cubic and PC-SAFT EOS	
pvap	2183.00	kPa	500.15	Quantitative comparison between predicted and experimental binary n-alkane p benzene phase behaviors using cubic and PC-SAFT EOS	
pvap	2877.00	kPa	520.05	Quantitative comparison between predicted and experimental binary n-alkane p benzene phase behaviors using cubic and PC-SAFT EOS	
pvap	12.71	kPa	298.15	(Vapour + liquid) equilibria of (1-butanol + benzene, or toluene, or o-, or m-, or p-xylene) at T = 308.15 K	
pvap	39.52	kPa	325.60	Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts	
pvap	49.45	kPa	331.70	Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts	

pvap	69.20	kPa	341.70	Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts
pvap	86.40	kPa	348.15	Phase equilibria and excess molar enthalpies study of the binary systems (pyrrole + hydrocarbon, or an alcohol) and modeling
pvap	101.60	kPa	353.60	Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts
pvap	247.52	kPa	385.30	Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts
pvap	499.10	kPa	415.80	Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts
pvap	101.33	kPa	353.25	Vapor Liquid Equilibrium Data for Binary Systems of N,N-Dimethylacetamide with Cyclohexene, Cyclohexane, and Benzene Separately at Atmospheric Pressure
pvap	15.63	kPa	303.15	Vapor Pressure Measurements for Binary Mixtures Containing Ionic Liquid and Predictions by the Conductor-like Screening Model for Real Solvents

pvap	24.45	kPa	313.15	Vapor Pressure Measurements for Binary Mixtures Containing Ionic Liquid and Predictions by the Conductor-like Screening Model for Real Solvents	
pvap	36.60	kPa	323.15	Vapor Pressure Measurements for Binary Mixtures Containing Ionic Liquid and Predictions by the Conductor-like Screening Model for Real Solvents	
pvap	53.12	kPa	333.15	Vapor Pressure Measurements for Binary Mixtures Containing Ionic Liquid and Predictions by the Conductor-like Screening Model for Real Solvents	
pvap	74.82	kPa	343.15	Vapor Pressure Measurements for Binary Mixtures Containing Ionic Liquid and Predictions by the Conductor-like Screening Model for Real Solvents	
pvap	101.30	kPa	353.25	Vapor-Liquid Equilibrium for Binary Systems of Allyl Alcohol + Water and Allyl Alcohol + Benzene at 101.3 kPa	
pvap	43.65	kPa	328.15	Vapor Liquid Equilibrium and Excess Enthalpy Data for Systems Containing N,N-Dimethylacetamic	le

pvap	101.33	kPa	353.27	Isobaric Vapor Liquid Equilibrium for Binary and Ternary Systems of Isoamyl Alcohol + Isoamyl Acetate + Dimethyl Sulfoxide at 101.33 kPa
pvap	137.28	kPa	363.15	Vapor-Liquid Equilibria for Four Binary Systems at 363.15 K: N-Methylformamide + Hexane, + Benzene, + Chlorobenzene, and + Acetonitrile
pvap	24.35	kPa	313.14	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol
pvap	36.15	kPa	323.14	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol
pvap	52.17	kPa	333.13	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol
pvap	379.30	kPa	403.15	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K
pvap	35.47	kPa	323.15	Isothermal Phase Equilibria and Excess Molar Enthalpies for Binary Systems with Dimethyl Ether at 323.15 K

pvap	6.08	kPa	283.15	Total vapour pressure and excess Gibbs energy for binary mixtures of 1,1,2,2-tetrachlorethane or tetrachloroethene with benzene at nine temperatures
pvap	29.85	kPa	318.15	Total vapour pressure and excess Gibbs energy for binary mixtures of 1,1,2,2-tetrachlorethane or tetrachloroethene with benzene at nine temperatures
pvap	24.40	kPa	313.15	Total vapour pressure and excess Gibbs energy for binary mixtures of 1,1,2,2-tetrachlorethane or tetrachloroethene with benzene at nine temperatures
pvap	19.81	kPa	308.15	Total vapour pressure and excess Gibbs energy for binary mixtures of 1,1,2,2-tetrachlorethane or tetrachloroethene with benzene at nine temperatures
pvap	750.14	kPa	435.40	Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts
pvap	15.93	kPa	303.15	Total vapour pressure and excess Gibbs energy for binary mixtures of 1,1,2,2-tetrachlorethane or tetrachloroethene with benzene at nine temperatures

pvap	12.69	kPa	298.15	Total vapour pressure and excess Gibbs energy for binary mixtures of 1,1,2,2-tetrachlorethane or tetrachloroethene with benzene at nine temperatures
pvap	10.03	kPa	293.15	Total vapour pressure and excess Gibbs energy for binary mixtures of 1,1,2,2-tetrachlorethane or tetrachloroethene with benzene at nine temperatures
pvap	7.85	kPa	288.15	Total vapour pressure and excess Gibbs energy for binary mixtures of 1,1,2,2-tetrachlorethane or tetrachloroethene with benzene at nine temperatures
rfi	1.50090		293.15	Experimental densities and excess volumes for binary mixtures of (dimethyl sulfoxide + an aromatic hydrocarbon) at temperatures from (293.15 to 353.15) K at atmospheric pressure
rfi	1.49790		298.15	Densities and Refractive Indices of Binary Mixtures of Benzene with Triethylamine and Tributylamine at Different Temperatures

rfi	1.49620	303.15	Densities and Refractive Indices of Binary Mixtures of Benzene with Triethylamine and Tributylamine at Different Temperatures
rfi	1.49440	308.15	Densities and Refractive Indices of Binary Mixtures of Benzene with Triethylamine and Tributylamine at Different Temperatures
rfi	1.49290	313.15	Densities and Refractive Indices of Binary Mixtures of Benzene with Triethylamine and Tributylamine at Different Temperatures
rfi	1.49110	318.15	Densities and Refractive Indices of Binary Mixtures of Benzene with Triethylamine and Tributylamine at Different Temperatures
rfi	1.49620	303.15	Volumetric, Viscometric, Ultrasonic, and Refractive Index Properties of Liquid Mixtures of Benzene with Industrially Important Monomers at Different Temperatures
rfi	1.49440	308.15	Volumetric, Viscometric, Ultrasonic, and Refractive Index Properties of Liquid Mixtures of Benzene with Industrially Important Monomers at Different Temperatures

rfi	1.49290	313.15	Volumetric, Viscometric, Ultrasonic, and Refractive Index Properties of Liquid Mixtures of Benzene with Industrially Important Monomers at Different Temperatures
rfi	1.49210	308.15	Topological and thermodynamic investigations of molecular interactions in binary mixtures: Molar excess volumes and molar excess enthalpies
rfi	1.38820	293.10	Liquid liquid equilibria of methylcyclohexane benzene N-formylmorpholine at several temperatures
rfi	1.49810	298.15	Separation of aromatic hydrocarbons from alkanes using ammonium ionic liquid C2NTf2 at T = 298.15K
rfi	1.49785	298.15	Isothermal vapor liquid equilibrium at 323.15K and excess molar volumes and refractive indices at 298.15K for the ternary system propyl vinyl ether + 1-propanol + benzene and its binary sub-systems

rfi	1.49764	298.15	Isothermal vapor-liquid equilibrium at T = 333.15 K and excess volumes and molar refractivity deviation at T = 298.15 K for the ternary mixtures {di-methyl carbonate (DMC) + ethanol + benzene} and {DMC+ ethanol + toluene}	
rfi	1.49774	298.15	Experimental data, correlation and prediction of the extraction of benzene from cyclic hydrocarbons using [Epy][ESO4] ionic liquid	
rfi	1.50090	293.15	Effect of temperature on the volumetric properties of (cyclohexanone + an aromatic hydrocarbon)	
rfi	1.50090	293.15	A study of densities and volumetric properties of binary mixtures containing nitrobenzene at T = (293.15 to 353.15) K	
rfi	1.49790	298.15	Excess Molar Volumes of (propiophenone + benzene, or toluene, or ethylbenzene, or butylbenzene) at temperatures 298.15 K and 328.15 K	
rfi	1.49792	298.15	KDB	
rfi	1.50090	298.15	The volumetric properties of (1,2-propanediol carbonate + benzene, or toluene, or styrene) binary mixtures at temperatures from T = 293.15 K to T = 353.15 K	

"ť:	1 40000	000.45	A zootrozia	
rfi	1.49692	298.15	Azeotropic behaviour of (benzene + cyclohexane + chlorobenzene) ternary mixture using chlorobenzene as entrainer at 101.3 kPa	
rfi	1.49710	298.15	Excess and deviation properties for the binary mixtures of methylcyclohexane with benzene, toluene, p-xylene, mesitylene, and anisole at T = (298.15, 303.15, and 308.15) K	
rfi	1.49360	303.15	Excess and deviation properties for the binary mixtures of methylcyclohexane with benzene, toluene, p-xylene, mesitylene, and anisole at T = (298.15, 303.15, and 308.15) K	
rfi	1.49030	308.15	Excess and deviation properties for the binary mixtures of methylcyclohexane with benzene, toluene, p-xylene, mesitylene, and anisole at T = (298.15, 303.15, and 308.15) K	
rfi	1.50500	288.15	Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T = (288.15 to 303.15) K	

rfi	1.49790	298.15	Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or p-xylene, or mesitylene) binary mixtures between T = (288.15 to 303.15) K
rfi	1.48490	303.15	Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T = (288.15 to 303.15) K
rfi	1.50090	293.10	Densities and volumetric properties of N-methyl-2-pyrrolidone with aromatic hydrocarbon at different temperature
rfi	1.49540	303.15	Study of activity coefficients for sodium iodide in (methanol + benzene) system by (vapour + liquid) equilibrium measurements
rfi	1.50090	298.15	Densities and excess volumes of binary mixtures of N,N-dimethylformamide with aromatic hydrocarbon at different temperature
rfi	1.50090	293.10	A study on densities and excess volumes in the (c-butyrolactone + aromatic hydrocarbon) system at various temperatures

rfi	1.50240	293.10	(Liquid + liquid) equilibria of three ternary systems: (heptane + benzene + N-formylmorpholine), (heptane + toluene + N-formylmorpholine), (heptane + xylene + N-formylmorpholine) from T = (298.15 to 353.15) K
rfi	1.50090	298.15	Effects of the presence of ethylacetate or benzene on the densities and volumetric properties of mixture (styrene + N,N-dimethylformamide)
rfi	1.49790	298.15	Excess molar volumes of (octane + benzene, or toluene, or 1,3-xylene, or 1,3,5-trimethylbenzene) at temperatures between (298.15 and 328.15) K
rfi	1.49790	298.15	p, Vm, T) measurements of (octane + benzene) at temperatures from (298.15 to 328.15) K and at pressures up to 40 MPa
rfi	1.49774	298.15	Thermophysical properties of the binary mixtures of 2-methyl-tetrahydrofuran with benzene and halobenzenes
rfi	1.49900	298.15	Liquid-liquid equilibria for mixtures of (Furfural + an Aromatic hydrocarbon + an alkane) at T=298.15 K

rfi	1.50150	293.15	Infinite Dilution Activity Coefficients of Hydrocarbons in Triethylene Glycol and Tetraethylene Glycol
rfi	1.50110	293.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Anisole with Benzene, Methylbenzene, Ethylbenzene, Propylbenzene, and Butylbenzene at (293.15 and 303.15) K
rfi	1.49774	298.15	Effect of the Chain Length on the Aromatic Ring in the Separation of Aromatic Compounds from Methylcyclohexane Using the Ionic Liquid 1-Ethyl-3-methylpyridinium Ethylsulfate
rfi	1.49774	298.15	Density, Speed of Sound, and Refractive Index of the Binary Systems Cyclohexane (1) or Methylcyclohexane (1) or Cyclo-octane (1) with Benzene (2), Toluene (2), and Ethylbenzene (2) at Two Temperatures
rfi	1.50765	283.15	Density, Speed of Sound, and Refractive Index of the Binary Systems Cyclohexane (1) or Methylcyclohexane (1) or Cyclo-octane (1) with Benzene (2), Toluene (2), and Ethylbenzene (2) at Two Temperatures

rfi	1.50110	293.15 3,9-Dimethyl-3,9-dioxide	Solubilities of -2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undo in Selected Solvents
rfi	1.49470	303.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Anisole with Benzene, Methylbenzene, Ethylbenzene, Propylbenzene, and Butylbenzene at (293.15 and 303.15) K
rfi	1.50110	293.15	Solubilities of Methyldiphenylphosphine Oxide in Selected Solvents
rfi	1.49765	298.15	Isobaric Vapor-Liquid Equilibria for the Binary Systems Benzene + Methyl Ethanoate, Benzene + Butyl Ethanoate, and Benzene + Methyl Heptanoate at 101.31kPa
rfi	1.50110	293.15	Solubilities of Triphenylphosphine Oxide in Selected Solvents
rfi	1.48560	318.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K

rfi	1.48870	313.15 Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K
rfi	1.49180	308.15 Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K
rfi	1.49490	303.15 Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K
rfi	1.49800	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K

rfi	1.50110	293.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.48560	318.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	
rfi	1.48870	313.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	
rfi	1.49180	308.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	
rfi	1.49490	303.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	
rfi	1.49800	298.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	

rfi	1.50110	293.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	
rfi	1.50420	288.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	
rfi	1.49790	298.15	Volumetric, Viscometric, Viscometric, Ultrasonic, and Refractive Index Properties of Liquid Mixtures of Benzene with Industrially Important Monomers at Different Temperatures	
rfi	1.49740	298.15	Experimental Isobaric Vapor-Liquid Equilibria of Binary Mixtures of 2,2,2-Trifluoroethanol with Benzene or Toluene	
rfi	1.50110	293.15	Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T = (288.15 to 303.15) K	

rfi	1.49764	298.15 Isothermal Vapor-Liquid Equilibrium at 333.15 K, Density, and Refractive Index at 298.15 K for the Ternary Mixture of Dibutyl Ether + Ethanol + Benzene and Binary Subsystems
rfi	1.49774	298.15 Liquid Liquid Extraction of Aromatic Compounds from Cycloalkanes Using 1-Butyl-3-methylimidazolium Methylsulfate Ionic Liquid
rfi	1.49774	298.15 Extraction of Benzene from Aliphatic Compounds Using Commercial Ionic Liquids as Solvents: Study of the Liquid Liquid Equilibrium at T = 298.15 K
rfi	1.49774	298.15 Liquid-Liquid Equilibria of the Ternary Systems of Alkane + Aromatic + 1-Ethylpyridinium Ethylsulfate Ionic Liquid at T = (283.15 and 298.15) K
rfi	1.49774	298.15 Liquid Extraction of Benzene from Its Mixtures Using 1-Ethyl-3-methylimidazolium Ethylsulfate as a Solvent
rfi	1.50110	293.15 Solubilities of Phosphorus-Containing Compounds in Selected Solvents
rfi	1.49774	298.15 Separation of Benzene from Linear Alkanes (C6-C9) Using 1-Ethyl-3-Methylimidazolium Ethylsulfate at T = 298.15 K

rfi	1.49720		298.20 Liquid-Liquid Equilibria for Ternary Mixtures (an Ionic Liquid + Benzene +Heptane or Hexadecane) at T) 298.2 K and Atmospheric Pressure
rfi	1.50420		288.15 Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K
rhol	878.23	kg/m3	293.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	824.70	kg/m3	343.15 Densities and volumetric properties of (N-acetylmorpholine + aromatic hydrocarbon) binary mixtures from T = (293.15 to 343.15) K
rhol	835.70	kg/m3	333.15 Densities and volumetric properties of (N-acetylmorpholine + aromatic hydrocarbon) binary mixtures from T = (293.15 to 343.15) K

rhol	846.50	kg/m3	323.15	Densities and volumetric properties of (N-acetylmorpholine + aromatic hydrocarbon) binary mixtures from T = (293.15 to 343.15) K
rhol	857.40	kg/m3	313.15	Densities and volumetric properties of (N-acetylmorpholine + aromatic hydrocarbon) binary mixtures from T = (293.15 to 343.15) K
rhol	868.20	kg/m3	303.15	Densities and volumetric properties of (N-acetylmorpholine + aromatic hydrocarbon) binary mixtures from T = (293.15 to 343.15) K
rhol	874.16	kg/m3	298.15	Experimental and theoretical study of surface tension of binary mixtures of (n-alkyl acetates + heptane, benzene, and toluene)
rhol	883.90	kg/m3	288.15	Volumetric properties of binary liquid mixtures: Application of the Prigogine Flory Patterson theory to excess molar volumes of dichloromethane with benzene or toluene
rhol	876.85	kg/m3	293.15	Volumetric properties of binary liquid mixtures: Application of the Prigogine Flory Patterson theory to excess molar volumes of dichloromethane with benzene or toluene

rhol	873.36	kg/m3	298.15	Volumetric properties of binary liquid mixtures: Application of the Prigogine Flory Patterson theory to excess molar volumes of dichloromethane with benzene or toluene
rhol	868.71	kg/m3	303.15	Volumetric properties of binary liquid mixtures: Application of the Prigogine Flory Patterson theory to excess molar volumes of dichloromethane with benzene or toluene
rhol	873.57	kg/m3	298.15	Evaluation of ionic liquids as solvent for aromatic extraction: Experimental, correlation and COSMO-RS predictions
rhol	873.45	kg/m3	298.15	Experimental and predicted data of excess molar enthalpies and excess molar volumes for the ternary system (1,3-dichlorobenzene + benzene + 1-chlorohexane) at T = 298.15 K
rhol	873.57	kg/m3	298.15	(Liquid + liquid) equilibrium at T = 298.15 K for ternary mixtures of alkane + aromatic compounds + imidazolium-based ionic liquids
rhol	878.89	kg/m3	293.15	Excess heat capacities of mixtures containing 1-methylpyrrolidin-2-one, chlorotoluenes and benzene

	070 - :		000.4=	
rhol	873.54	kg/m3	298.15	Excess heat capacities of mixtures containing 1-methylpyrrolidin-2-one, chlorotoluenes and benzene
rhol	868.20	kg/m3	303.15	Excess heat capacities of mixtures containing 1-methylpyrrolidin-2-one, chlorotoluenes and benzene
rhol	873.71	kg/m3	298.15	Determination and correlation of (liquid + liquid) equilibria of ternary and quaternary systems with octane, decane, benzene and [BMpyr][DCA] at T = 298.15 K and atmospheric pressure
rhol	878.87	kg/m3	293.15	Theoretical and experimental study on volumetric and electromagnetic properties of binary systems consisting of 1,2-dichloroethane with benzene and its derivatives at T = (293.15 to 333.15) K
rhol	868.20	kg/m3	303.15	Theoretical and experimental study on volumetric and electromagnetic properties of binary systems consisting of 1,2-dichloroethane with benzene and its derivatives at T = (293.15 to 333.15) K

	070.57	1 / 0	000.45
rhol	873.57	kg/m3	298.15 Measurements and equation-of-state modelling of thermodynamic properties of binary mixtures of 1-butyl-1-methylpyrrolidinium tetracyanoborate ionic liquid with molecular
rhol	857.44	kg/m3	compounds 313.15 Theoretical and
	037.44	kg/III3	experimental study on volumetric and electromagnetic properties of binary systems consisting of 1,2-dichloroethane with benzene and its derivatives at T = (293.15 to 333.15) K
rhol	846.62	kg/m3	323.15 Theoretical and experimental study on volumetric and electromagnetic properties of binary systems consisting of 1,2-dichloroethane with benzene and its derivatives at T = (293.15 to 333.15) K
rhol	835.71	kg/m3	333.15 Theoretical and experimental study on volumetric and electromagnetic properties of binary systems consisting of 1,2-dichloroethane with benzene and its derivatives at T = (293.15 to 333.15) K
rhol	868.30	kg/m3	303.15 Studies of partial molar volumes of alkylamine in non-electrolyte solvents I. Alkylamines in hydrocarbons at 303.15 and 313.15K

rhol	857.59	kg/m3	313.15	Studies of partial molar volumes of alkylamine in non-electrolyte solvents I. Alkylamines in hydrocarbons at 303.15 and 313.15K
rhol	868.42	kg/m3	303.15	Volumetric and transport properties of ternary mixtures containing 1-propanol + ethyl ethanoate + cyclohexane or benzene at 303.15 K: Experimental data, correlation and prediction by ERAS model
rhol	873.64	kg/m3	298.15	Excess molar volumes and isentropic compressibilities changes of mixing of tetrahydropyran + benzene + cyclo or n-alkanes ternary mixtures at 308.15 K
rhol	878.93	kg/m3	293.15	Density and Surface Tension of Binary Mixtures of 2,2,4-Trimethylpentane + n-Heptane, 2,2,4-Trimethylpentane + n-Octane, Ethyl Acetate + Benzene, and Butanenitrile + Benzene from (293.15 to 323.15) K
rhol	873.62	kg/m3	298.15	Density and Surface Tension of Binary Mixtures of 2,2,4-Trimethylpentane + n-Heptane, 2,2,4-Trimethylpentane + n-Octane, Ethyl Acetate + Benzene, and Butanenitrile + Benzene from (293.15 to 323.15) K

rhol	868.29	kg/m3	303.15	Density and Surface Tension of Binary Mixtures of 2,2,4-Trimethylpentane + n-Heptane, 2,2,4-Trimethylpentane + n-Octane, Ethyl Acetate + Benzene, and Butanenitrile + Benzene from (293.15 to 323.15) K
rhol	862.94	kg/m3	308.15	Density and Surface Tension of Binary Mixtures of 2,2,4-Trimethylpentane + n-Heptane, 2,2,4-Trimethylpentane + n-Octane, Ethyl Acetate + Benzene, and Butanenitrile + Benzene from (293.15 to 323.15) K
rhol	857.58	kg/m3	313.15	Density and Surface Tension of Binary Mixtures of 2,2,4-Trimethylpentane + n-Heptane, 2,2,4-Trimethylpentane + n-Octane, Ethyl Acetate + Benzene, and Butanenitrile + Benzene from (293.15 to 323.15) K
rhol	852.19	kg/m3	318.15	Density and Surface Tension of Binary Mixtures of 2,2,4-Trimethylpentane + n-Heptane, 2,2,4-Trimethylpentane + n-Octane, Ethyl Acetate + Benzene, and Butanenitrile + Benzene from (293.15 to 323.15) K

rhol	846.77	kg/m3	323.15	Density and Surface Tension of Binary Mixtures of 2,2,4-Trimethylpentane + n-Heptane, 2,2,4-Trimethylpentane + n-Octane, Ethyl Acetate + Benzene, and Butanenitrile + Benzene from (293.15 to 323.15) K	
rhol	874.00	kg/m3	298.15	Liquid Liquid Equilibrium data for the ternary systems of Water, Isopropyl alcohol, and selected entrainers	
rhol	873.45	kg/m3	298.10	Excess Molar Enthalpies of Propyl Propanoate + 1-Hexanol + Benzene at the Temperatures of 25 :C and 35 :C	
rhol	873.64	kg/m3	298.15	Vapor-Liquid Equilibria and Excess Enthalpies for Binary Systems of Dimethoxymethane with Hydrocarbons	
rhol	876.53	kg/m3	293.20	Isobaric Vapor-Liquid Equilibria for Binary Mixtures of 1,2-Dibromoethane with Benzene, Toluene, Fluorobenzene, and Bromobenzene at Atmospheric Pressure	
rhol	873.58	kg/m3	298.15	Volumetric Properties of the Binary Methanol + Chloroform and Ternary Methanol + Chloroform + Benzene Mixtures at (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K	

rhol	875.47	kg/m3	298.15	Calorimetric Study of Nitrile Group-Solvent Interactions and Comparison with Dispersive Quasi-Chemical (DISQUAC) Predictions	
rhol	868.10	kg/m3	303.15	Viscometric Behavior of Binary Mixtures of Butan-2-one with Benzene at T = (303.15, 313.15, and 323.15) K	
rhol	857.40	kg/m3	313.15	Viscometric Behavior of Binary Mixtures of Butan-2-one with Benzene at T = (303.15, 313.15, and 323.15) K	
rhol	846.60	kg/m3	323.15	Viscometric Behavior of Binary Mixtures of Butan-2-one with Benzene at T = (303.15, 313.15, and 323.15) K	
rhol	873.57	kg/m3	298.15 2,4,6,8-1	Excess Molar Volumes of Fetramethylcyclotetrasiloxane with Benzene, Toluene, and Xylene at T = (288.15, 298.15, and 308.15) K	
rhol	873.54	kg/m3	298.15	Thermodynamic Properties of Ternary Liquid Mixtures Containing o-Chlorotoluene: Excess Molar Volumes and Excess Isentropic Compressibilities	
rhol	868.20	kg/m3	303.15	Thermodynamic Properties of Ternary Liquid Mixtures Containing o-Chlorotoluene: Excess Molar Volumes and Excess Isentropic Compressibilities	

rhol	862.84	kg/m3	308.15 Thermodynamic Properties of Ternary Liquid Mixtures Containing o-Chlorotoluene: Excess Molar Volumes and Excess Isentropic Compressibilities
rhol	873.58	kg/m3	298.15 Excess Enthalpies of Chloroalkylbenzene + Alkylbenzene Mixtures
rhol	873.11	kg/m3	298.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	867.59	kg/m3	303.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	862.21	kg/m3	308.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	862.87	kg/m3	308.15 Effect of temperature on the excess molar volumes of some alcohol + aromatic mixtures and modelling by cubic EOS mixing rules

rhol	856.82	kg/m3	313.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	846.05	kg/m3	323.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	835.76	kg/m3	333.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	824.89	kg/m3	343.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	884.25	kg/m3	288.15 Densities and Excess Molar Volumes of the Ternary Mixture 2-Butanol + Chloroform + Benzene and Binary Mixtures 2-Butanol + Chloroform, or + Benzene over the Temperature Range (288.15 to 313.15) K

rhol	878.92	kg/m3	293.15 Densities and Excess Molar Volumes of the Ternary Mixture 2-Butanol + Chloroform + Benzene and Binary Mixtures 2-Butanol + Chloroform, or + Benzene over the Temperature Range (288.15 to 313.15) K
rhol	878.90	kg/m3	293.15 Densities and volumetric properties of (N-acetylmorpholine + aromatic hydrocarbon) binary mixtures from T = (293.15 to 343.15) K
rhol	873.20	kg/m3	298.15 Ternary (liquid + liquid) equilibria for mixtures of 1-hexyl-3-methylimidazolium (tetrafluoroborate or hexafluorophosphate) + benzene + an alkane at T = 298.2 K and p = 0.1 MPa
rhol	873.71	kg/m3	298.15 Application of the ionic liquid tributylmethylammonium bis(trifluoromethylsulfonyl)imide as solvent for the extraction of benzene from octane and decane at T = 298.15 K and atmospheric pressure
rhol	873.58	kg/m3	298.15 Densities and Excess Molar Volumes of the Ternary Mixture 2-Butanol + Chloroform + Benzene and Binary Mixtures 2-Butanol + Chloroform, or + Benzene over the Temperature Range (288.15 to 313.15) K

rhol	868.23	kg/m3	303.15	Densities and Excess Molar Volumes of the Ternary Mixture 2-Butanol + Chloroform + Benzene and Binary Mixtures 2-Butanol + Chloroform, or + Benzene over the Temperature Range (288.15 to 313.15) K	
rhol	862.87	kg/m3	308.15	Densities and Excess Molar Volumes of the Ternary Mixture 2-Butanol + Chloroform + Benzene and Binary Mixtures 2-Butanol + Chloroform, or + Benzene over the Temperature Range (288.15 to 313.15) K	
rhol	857.50	kg/m3	313.15	Densities and Excess Molar Volumes of the Ternary Mixture 2-Butanol + Chloroform + Benzene and Binary Mixtures 2-Butanol + Chloroform, or + Benzene over the Temperature Range (288.15 to 313.15) K	
rhol	868.10	kg/m3	303.15	Volumetric Behavior of the Binary Mixtures of Methyl Ethyl Ketone with n-Hexane, Cyclohexane, and Benzene at T) (303.15, 313.15, and 323.15) K	
rhol	857.40	kg/m3	313.15	Volumetric Behavior of the Binary Mixtures of Methyl Ethyl Ketone with n-Hexane, Cyclohexane, and Benzene at T) (303.15, 313.15, and 323.15) K	

rhol	846.60	kg/m3	323.15	Volumetric Behavior of the Binary Mixtures of Methyl Ethyl Ketone with n-Hexane, Cyclohexane, and Benzene at T) (303.15, 313.15, and 323.15) K	
rhol	873.50	kg/m3	298.15	Density, Speed of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes and Aromatic Compounds at T = 313.15 K	
rhol	873.64	kg/m3	298.15	Molar Excess Volumes and Excess Isentropic Compressibilities of {2-Methylaniline (i) + Benzene (j) + Methylbenzene}, {2-Methylaniline (i) + Benzene (j) + 1,2-Dimethylbenzene (k)}, and {2-Methylaniline (i) + Benzene (j) + 1,4-Dimethylbenzene (k)} at T = 308.15 K	
rhol	885.00	kg/m3	289.00	KDB	
rhol	884.25	kg/m3	288.15	Temperature Dependence of Densities and Excess Molar Volumes of the Ternary Mixture (1-Butanol + Chloroform + Benzene) and its Binary Constituents (1-Butanol + Chloroform and 1-Butanol + Benzene)	

rhol	878.92	kg/m3	293.15	Temperature Dependence of Densities and Excess Molar Volumes of the Ternary Mixture (1-Butanol + Chloroform + Benzene) and its Binary Constituents (1-Butanol + Chloroform and 1-Butanol + Benzene)	
rhol	873.58	kg/m3	298.15	Temperature Dependence of Densities and Excess Molar Volumes of the Ternary Mixture (1-Butanol + Chloroform + Benzene) and its Binary Constituents (1-Butanol + Chloroform and 1-Butanol + Benzene)	
rhol	873.40	kg/m3	298.15	Mutual Solubility of Pyridinium-Based Tetrafluoroborates and Toluene	
rhol	862.87	kg/m3	308.15	Temperature Dependence of Densities and Excess Molar Volumes of the Ternary Mixture (1-Butanol + Chloroform + Benzene) and its Binary Constituents (1-Butanol + Chloroform and 1-Butanol + Benzene)	
rhol	857.50	kg/m3	313.15	Temperature Dependence of Densities and Excess Molar Volumes of the Ternary Mixture (1-Butanol + Chloroform + Benzene) and its Binary Constituents (1-Butanol + Chloroform and 1-Butanol + Benzene)	

rhol	884.30	kg/m3	288.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K	
rhol	878.95	kg/m3	293.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K	
rhol	873.61	kg/m3	298.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K	
rhol	868.26	kg/m3	303.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K	

rhol	862.90	kg/m3	308.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K	
rhol	857.56	kg/m3	313.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K	
rhol	868.23	kg/m3	303.15	Effect of temperature on the excess molar volumes of some alcohol + aromatic mixtures and modelling by cubic EOS mixing rules	
rhol	873.62	kg/m3	298.15	Topological Investigations of Excess Molar Volumes and Excess Isentropic Compressibilities of Ternary Mixtures Containing Pyrrolidin-2-one at 308.15 K	
rhol	873.66	kg/m3	298.15	Densities, Viscosities, Speeds of Sound, and Refractive Indices of Binary Mixtures of 2-Ethyl-1-hexanol with Benzene and Halobenzenes	

rhol	868.29	kg/m3	303.15	Densities, Viscosities, Speeds of Sound, and Refractive Indices of Binary Mixtures of 2-Ethyl-1-hexanol with Benzene and Halobenzenes
rhol	862.92	kg/m3	308.15	Densities, Viscosities, Speeds of Sound, and Refractive Indices of Binary Mixtures of 2-Ethyl-1-hexanol with Benzene and Halobenzenes
rhol	873.60	kg/m3	298.15	Fluid Phase Topology of Benzene + Cyclohexane + 1-Propanol at 101.3 kPa
rhol	873.55	kg/m3	298.15	Experimental and predicted vapour liquid equilibrium of 1,4-dioxane with cycloalkanes and benzene
rhol	884.25	kg/m3	288.15	Effect of temperature on the excess molar volumes of some alcohol + aromatic mixtures and modelling by cubic EOS mixing rules
rhol	878.92	kg/m3	293.15	Effect of temperature on the excess molar volumes of some alcohol + aromatic mixtures and modelling by cubic EOS mixing rules
rhol	873.58	kg/m3	298.15	Effect of temperature on the excess molar volumes of some alcohol + aromatic mixtures and modelling by cubic EOS mixing rules

rhol	873.71	kg/m3	298.15	Study of the suitability of two ammonium-based ionic liquids for the extraction of benzene from its mixtures with aliphatic hydrocarbons.
rhol	873.73	kg/m3	298.15	Liquid liquid equilibria in the ternary systems {hexadecane + BTX aromatics + 2-methoxyethanol or acetonitrile} at 298.15 K
rhol	873.53	kg/m3	298.15	Phase behaviour of tricyanomethanide-based ionic liquids with alcohols and hydrocarbons
rhol	862.84	kg/m3	308.15	Heat capacities of binary and ternary mixtures containing o-chlorotoluene, cyclic ether and aromatic hydrocarbons
rhol	868.20	kg/m3	303.15	Heat capacities of binary and ternary mixtures containing o-chlorotoluene, cyclic ether and aromatic hydrocarbons
rhol	873.54	kg/m3	298.15	Heat capacities of binary and ternary mixtures containing o-chlorotoluene, cyclic ether and aromatic hydrocarbons
rhol	873.79	kg/m3	298.15	Liquid-liquid equilibrium data for ternary mixtures composed of n-hexane, benzene and acetonitrile at (298.15, 308.15, and 318.15) K

rhol	873.53	kg/m3	298.15 Phase behaviour of ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate with alcohols, water and aromatic hydrocarbons
rhol	846.76	kg/m3	323.00 Volumetric behavior of the binary systems benzene + cyclohexane and benzene + 2,2,4-trimethyl-pentane at temperatures 293.15-323.15K
rhol	857.57	kg/m3	313.00 Volumetric behavior of the binary systems benzene + cyclohexane and benzene + 2,2,4-trimethyl-pentane at temperatures 293.15-323.15K
rhol	868.30	kg/m3	303.00 Volumetric behavior of the binary systems benzene + cyclohexane and benzene + 2,2,4-trimethyl-pentane at temperatures 293.15-323.15K
rhol	878.98	kg/m3	293.00 Volumetric behavior of the binary systems benzene + cyclohexane and benzene + 2,2,4-trimethyl-pentane at temperatures 293.15-323.15K
rhol	873.95	kg/m3	298.15 Liquid liquid equilibrium of ternary systems 1-butyl-3-methylimidazolium hexafluorophosphate + aromatic + aliphatic
rhol	857.50	kg/m3	313.15 Volumetric properties of the ternary system ethanol + chloroform + benzene at temperature range (288.15 313.15) K: Experimental data, correlation and prediction by cubic EOS

rhol	862.87	kg/m3	308.15	Volumetric properties of the ternary system ethanol + chloroform + benzene at temperature range (288.15 313.15) K: Experimental data, correlation and prediction by cubic EOS	
rhol	868.23	kg/m3	303.15	Volumetric properties of the ternary system ethanol + chloroform + benzene at temperature range (288.15 313.15) K: Experimental data, correlation and prediction by cubic EOS	
rhol	873.58	kg/m3	298.15	Volumetric properties of the ternary system ethanol + chloroform + benzene at temperature range (288.15 313.15) K: Experimental data, correlation and prediction by cubic EOS	
rhol	878.92	kg/m3	293.15	Volumetric properties of the ternary system ethanol + chloroform + benzene at temperature range (288.15 313.15) K: Experimental data, correlation and prediction by cubic EOS	

rhol	884.25	kg/m3	288.15	Volumetric properties of the ternary system ethanol + chloroform + benzene at temperature range (288.15 313.15) K: Experimental data, correlation and prediction by cubic EOS
rhol	873.58	kg/m3	298.15	Thermodynamic study of 1,1,2,2-tetrachloroethane + hydrocarbon mixtures I. Excess and solvation enthalpies
rhol	873.67	kg/m3	298.10	Excess enthalpies of binary mixtures of 2-ethoxyethanol with four hydrocarbons at 298.15, 308.15, and 318.15K An experimental and theoretical study
rhol	857.50	kg/m3	313.15	Effect of temperature on the excess molar volumes of some alcohol + aromatic mixtures and modelling by cubic EOS mixing rules
rhol	852.23	kg/m3	318.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K

rhol	868.23	kg/m3	303.15	Temperature Dependence of Densities and Excess Molar Volumes of the Ternary Mixture (1-Butanol + Chloroform + Benzene) and its Binary Constituents (1-Butanol + Chloroform and 1-Butanol + Benzene)	
sfust	35.40	J/mol×K	278.69	NIST Webbook	
sfust	35.90	J/mol×K	278.64	NIST Webbook	
sfust	35.50	J/mol×K	278.55	NIST Webbook	
sfust	35.19	J/mol×K	278.60	NIST Webbook	
sfust	32.10	J/mol×K	278.80	NIST Webbook	
sfust	33.30	J/mol×K	279.10	NIST Webbook	
sfust	35.59	J/mol×K	278.65	NIST Webbook	
speedsl	1345.47	m/s	288.15	Temperature influence on mixing properties of {ethyl tert-butyl ether (ETBE) + gasoline additives}	
speedsl	1368.70	m/s	283.15	Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures	
speedsl	1298.30	m/s	298.15	Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures	
speedsl	1229.50	m/s	313.15	Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures	

	speedsl	1345.47	m/s	288.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
	speedsl	1333.44	m/s	290.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
	speedsl	1321.59	m/s	293.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
	speedsl	1309.88	m/s	295.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
	speedsl	1298.27	m/s	298.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
	speedsl	1286.68	m/s	300.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
_	speedsl	1275.13	m/s	303.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	

speedsl	1263.59	m/s	305.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1252.08	m/s	308.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1240.69	m/s	310.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1229.29	m/s	313.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1217.94	m/s	315.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1206.70	m/s	318.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1195.55	m/s	320.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	

speedsl	1184.63	m/s	323.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1298.00	m/s	298.15	Isentropic Compressibilities Changes of Mixing of Tetrahydropyran and Aromatic Hydrocarbons Ternary Mixtures at 308.15 K	
speedsl	1316.50	m/s	293.00	Ultrasonic velocity, viscosity and excess properties of binary mixture of tetrahydrofuran with 1-propanol and 2-propanol	
speedsl	1294.00	m/s	298.00	Ultrasonic velocity, viscosity and excess properties of binary mixture of tetrahydrofuran with 1-propanol and 2-propanol	
speedsl	1272.80	m/s	303.00	Ultrasonic velocity, viscosity and excess properties of binary mixture of tetrahydrofuran with 1-propanol and 2-propanol	
speedsl	1226.50	m/s	313.00	Ultrasonic velocity, viscosity and excess properties of binary mixture of tetrahydrofuran with 1-propanol and 2-propanol	
speedsl	1298.20	m/s	298.15	Sound speed and density measurements for tetra-n-butylammonium bromide in benzene and carbon tetrachloride solutions at T = 298.15 K	

speedsl	1260.00	m/s	308.15	Densities, Speeds of Sound, Excess Molar Volumes, and Excess Isentropic Compressibilities at T = (298.15 and 308.15) K for Methyl Methacrylate + 1-Alkanols (1-Butanol, 1-Pentanol, and 1-Heptanol) + Cyclohexane, + Benzene, + Toluene, + p-Xylene, and + Ethylbenzene	
speedsl	1300.00	m/s	298.15	Densities, Speeds of Sound, Excess Molar Volumes, and Excess Isentropic Compressibilities at T = (298.15 and 308.15) K for Methyl Methacrylate + 1-Alkanols (1-Butanol, 1-Pentanol, and 1-Heptanol) + Cyclohexane, + Benzene, + Toluene, + p-Xylene, and + Ethylbenzene	
speedsl	1260.00	m/s	308.15	Densities, Excess Molar Volumes at T = (298.15 to 313.15) K, Speeds of Sound, Excess Isentropic Compressibilities, Relative Permittivities and Deviations in Molar Polarizations at T = (298.15 and 308.15) K for Methyl Methacrylate + 2-Butoxyethanol or + Dibutyl Ether + Benzene, + Toluene and + p-Xylene	

speedsl	1299.00	m/s	298.15	Densities, Excess Molar Volumes at T = (298.15 to 313.15) K, Speeds of Sound, Excess Isentropic Compressibilities, Relative Permittivities and Deviations in Molar Polarizations at T = (298.15 and 308.15) K for Methyl Methacrylate + 2-Butoxyethanol or + Dibutyl Ether + Benzene, + Toluene and + p-Xylene	
speedsl	1184.50	m/s	323.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1207.00	m/s	318.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1229.80	m/s	313.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	

speedsl	1252.80	m/s	308.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1276.00	m/s	303.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1299.30	m/s	298.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1322.70	m/s	293.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1184.47	m/s	323.15	Volumetric and Acoustic Properties of Binary Mixtures of Cyclohexane + Benzene and + Benzaldehyde at (293.15 to 323.15) K	
speedsl	1207.04	m/s	318.15	Volumetric and Acoustic Properties of Binary Mixtures of Cyclohexane + Benzene and + Benzaldehyde at (293.15 to 323.15) K	

speedsl	1229.76	m/s	313.15	Volumetric and Acoustic Properties of Binary Mixtures of Cyclohexane + Benzene and + Benzaldehyde at (293.15 to 323.15) K	
speedsl	1252.76	m/s	308.15	Volumetric and Acoustic Properties of Binary Mixtures of Cyclohexane + Benzene and + Benzaldehyde at (293.15 to 323.15) K	
speedsl	1275.96	m/s	303.15	Volumetric and Acoustic Properties of Binary Mixtures of Cyclohexane + Benzene and + Benzaldehyde at (293.15 to 323.15) K	
speedsl	1299.33	m/s	298.15	Volumetric and Acoustic Properties of Binary Mixtures of Cyclohexane + Benzene and + Benzaldehyde at (293.15 to 323.15) K	
speedsl	1322.72	m/s	293.15	Volumetric and Acoustic Properties of Binary Mixtures of Cyclohexane + Benzene and + Benzaldehyde at (293.15 to 323.15) K	
speedsl	1207.80	m/s	318.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	

speedsl	1229.30	m/s	313.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1252.40	m/s	308.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1275.70	m/s	303.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1299.50	m/s	298.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1324.40	m/s	293.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	

speedsl	1298.00	m/s	298.15	Thermodynamic and topological investigations of molecular interactions in binary and ternary mixtures containing 1-methyl pyrrolidin-2-one at T = 308.15 K
speedsl	1184.63	m/s	323.15	Temperature influence on mixing properties of {ethyl tert-butyl ether (ETBE) + gasoline additives}
speedsl	1298.27	m/s	298.15	Temperature influence on mixing properties of {ethyl tert-butyl ether (ETBE) + gasoline additives}
speedsl	1259.00	m/s	308.15	Thermodynamic and topological investigations of molecular interactions in binary and ternary mixtures containing 1-methyl pyrrolidin-2-one at T = 308.15 K
srf	0.03	N/m	293.20	KDB
srf	0.03	N/m	280.25	Standard reference data for the air-liquid and vapor-liquid surface tension of benzene
srf	0.03	N/m	283.13	Standard reference data for the air-liquid and vapor-liquid surface tension of benzene
srf	0.03	N/m	285.64	Standard reference data for the air-liquid and vapor-liquid surface tension of benzene
srf	0.03	N/m	288.11	Standard reference data for the air-liquid and vapor-liquid surface tension of benzene

srf	0.03	N/m	290.58	Standard reference data for the air-liquid and vapor-liquid surface tension of benzene	
srf	0.03	N/m	293.08	Standard reference data for the air-liquid and vapor-liquid surface tension of benzene	
srf	0.03	N/m	295.46	Standard reference data for the air-liquid and vapor-liquid surface tension of benzene	
srf	0.03	N/m	298.09	Standard reference data for the air-liquid and vapor-liquid surface tension of benzene	
srf	0.03	N/m	300.41	Standard reference data for the air-liquid and vapor-liquid surface tension of benzene	
srf	0.03	N/m	303.24	Standard reference data for the air-liquid and vapor-liquid surface tension of benzene	
srf	0.03	N/m	306.00	Standard reference data for the air-liquid and vapor-liquid surface tension of benzene	
srf	0.03	N/m	308.05	Standard reference data for the air-liquid and vapor-liquid surface tension of benzene	
srf	0.03	N/m	310.32	Standard reference data for the air-liquid and vapor-liquid surface tension of benzene	
srf	0.03	N/m	313.44	Standard reference data for the air-liquid and vapor-liquid surface tension	

srf	0.03	N/m	293.15 1-Vir	Investigation of Surface Properties and Solubility of nyl-3-alkyl/Esterimidazolium Halide Ionic Liquids by Density Functional Methods
tcondl	0.15	W/m×K	281.18	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.15	W/m×K	281.49	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.15	W/m×K	281.76	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.14	W/m×K	295.92	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons

tcondl	0.11	W/m×K	392.16	Thermal Conductivity Measurement of Polyglycol Alkyl Ethers at Temperatures from (303.15 to 393.15) K	
tcondl	0.14	W/m×K	296.53	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.14	W/m×K	301.25	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.14	W/m×K	301.59	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.14	W/m×K	301.87	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	

tcondl	0.13	W/m×K	319.14	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.13	W/m×K	319.49	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.13	W/m×K	319.79	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.14	W/m×K	302.75	Thermal Conductivity Measurement of Polyglycol Alkyl Ethers at Temperatures from (303.15 to 393.15) K	
tcondl	0.13	W/m×K	332.54	Thermal Conductivity Measurement of Polyglycol Alkyl Ethers at Temperatures from (303.15 to 393.15) K	
tcondl	0.12	W/m×K	362.39	Thermal Conductivity Measurement of Polyglycol Alkyl Ethers at Temperatures from (303.15 to 393.15) K	

tcondl	0.14	W/m×K	296.25	Thermal Conductivity and Thermal	
				Diffusivity of	
				Twenty-Nine Liquids: Alkenes,	
				Cyclic (Alkanes,	
				Alkenes,	
				Alkadienes,	
				Aromatics), and	
				Deuterated	
				Hydrocarbons	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbp	353.35	K	96.60	Low cost apparatus for rapid boiling point determination of small air sensitive samples under inert atmosphere
tfp	351.25	K	300000.00	Fusion Curves and Enthalpy and Internal Energy Changes of Benzene, Nitrobenzene, Bromobenzene, and Chlorobenzene at Pressures up to 3500 MPa
tfp	293.15	K	53620.00	Influence of size and shape effects on the high-pressure solubility of n-alkanes: Experimental data, correlation and prediction
tfp	303.15	K	92220.00	Influence of size and shape effects on the high-pressure solubility of n-alkanes: Experimental data, correlation and prediction

tfp	313.15	K	133290.00	Influence of size	
				and shape effects on the high-pressure solubility of n-alkanes: Experimental data, correlation and prediction	
tfp	323.15	K	176820.00	Influence of size and shape effects on the high-pressure solubility of n-alkanes: Experimental data, correlation and prediction	
tfp	333.15	К	222810.00	Influence of size and shape effects on the high-pressure solubility of n-alkanes: Experimental data, correlation and prediction	
tfp	343.15	К	271270.00	Influence of size and shape effects on the high-pressure solubility of n-alkanes: Experimental data, correlation and prediction	
tfp	353.15	К	322200.00	Influence of size and shape effects on the high-pressure solubility of n-alkanes: Experimental data, correlation and prediction	
tfp	306.44	K	100000.00	Fusion Curves and Enthalpy and Internal Energy Changes of Benzene, Nitrobenzene, Bromobenzene, and Chlorobenzene at Pressures up to 3500 MPa	

tfp	329.93	K	200000.00	Fusion Curves and Enthalpy and Internal Energy Changes of Benzene, Nitrobenzene, Bromobenzene, and Chlorobenzene at Pressures up to 3500 MPa
tfp	278.94	K	100.00	Activity coefficient at infinite dilution, azeotropic data, excess enthalpies and solid liquid-equilibria for binary systems of alkanes and aromatics with esters
tfp	370.85	K	40000.00	Fusion Curves and Enthalpy and Internal Energy Changes of Benzene, Nitrobenzene, Bromobenzene, and Chlorobenzene at Pressures up to 3500 MPa
tfp	389.07	K	500000.00	Fusion Curves and Enthalpy and Internal Energy Changes of Benzene, Nitrobenzene, Bromobenzene, and Chlorobenzene at Pressures up to 3500 MPa
tfp	406.15	K	600000.00	Fusion Curves and Enthalpy and Internal Energy Changes of Benzene, Nitrobenzene, Bromobenzene, and Chlorobenzene at Pressures up to 3500 MPa

tfp	422.25	К	70000.00	Fusion Curves and Enthalpy and Internal Energy Changes of Benzene, Nitrobenzene, Bromobenzene, and Chlorobenzene at Pressures up to 3500 MPa	
tfp	437.52	K	800000.00	Fusion Curves and Enthalpy and Internal Energy Changes of Benzene, Nitrobenzene, Bromobenzene, and Chlorobenzene at Pressures up to 3500 MPa	
tfp	452.06	К	90000.00	Fusion Curves and Enthalpy and Internal Energy Changes of Benzene, Nitrobenzene, Bromobenzene, and Chlorobenzene at Pressures up to 3500 MPa	
tfp	465.96	K	1000000.00	Fusion Curves and Enthalpy and Internal Energy Changes of Benzene, Nitrobenzene, Bromobenzene, and Chlorobenzene at Pressures up to 3500 MPa	
tfp	538.73	K	1500000.00	Fusion Curves and Enthalpy and Internal Energy Changes of Benzene, Nitrobenzene, Bromobenzene, and Chlorobenzene at Pressures up to 3500 MPa	

tfp	584.85	K	2000000.00	Fusion Curves and Enthalpy and Internal Energy Changes of Benzene, Nitrobenzene, Bromobenzene, and Chlorobenzene at Pressures up to 3500 MPa	
tfp	625.73	K	2500000.00	Fusion Curves and Enthalpy and Internal Energy Changes of Benzene, Nitrobenzene, Bromobenzene, and Chlorobenzene at Pressures up to 3500 MPa	
tfp	663.67	K	300000.00	Fusion Curves and Enthalpy and Internal Energy Changes of Benzene, Nitrobenzene, Bromobenzene, and Chlorobenzene at Pressures up to 3500 MPa	

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.36756e+01
Coeff. B	-2.51081e+03
Coeff. C	-7.60040e+01
Temperature range (K), min.	263.55
Temperature range (K), max.	376.19

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	7.11072e+01
Coeff. B	-6.28104e+03

Coeff. C	-8.43361e+00
Coeff. D	6.19841e-06
Temperature range (K), min.	278.68
Temperature range (K), max.	562.16

Datasets

Viscosity, Pa*s

Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid
313.20	690.00	0.0004790
313.20	5000.00	0.0005000
313.20	10000.00	0.0005240
313.20	20000.00	0.0005740
313.20	30000.00	0.0006250
313.20	40000.00	0.0006750
313.20	50000.00	0.0007250
313.20	60000.00	0.0007740
333.20	690.00	0.0003870
333.20	5000.00	0.0004040
333.20	10000.00	0.0004240
333.20	20000.00	0.0004660
333.20	30000.00	0.0005090
333.20	40000.00	0.0005530
333.20	50000.00	0.0005970
333.20	60000.00	0.0006410
353.20	690.00	0.0003170
353.20	5000.00	0.0003310
353.20	10000.00	0.0003470
353.20	20000.00	0.0003800
353.20	30000.00	0.0004150
353.20	40000.00	0.0004510
353.20	50000.00	0.0004890
353.20	60000.00	0.0005260
373.20	690.00	0.0002690
373.20	5000.00	0.0002790
373.20	10000.00	0.0002910
373.20	20000.00	0.0003160
373.20	30000.00	0.0003440

373.20	40000.00	0.0003720
373.20	50000.00	0.0004020
373.20	60000.00	0.0004340
393.20	690.00	0.0002390
393.20	5000.00	0.0002460
393.20	10000.00	0.0002550
393.20	20000.00	0.0002730
393.20	30000.00	0.0002940
393.20	40000.00	0.0003150
393.20	50000.00	0.0003390
393.20	60000.00	0.0003640

Reference

https://www.doi.org/10.1016/j.fluid.2007.08.010

Temperature, K	Pressure, kPa	Viscosity, Pa*s
303.15	101.30	0.0005390
Reference		https://www.doi.org/10.1021/je034204h

Mass density, kg/m3

Temperature, K - Liquid	Pressure, kPa - Liquid	Mass density, kg/m3 - Liquid
293.00	2100.00	877.4
293.00	3100.00	878.1
293.00	4100.00	878.8
293.00	5000.00	879.6
293.00	10100.00	883.4
293.00	20000.00	890.4
293.00	30000.00	896.9
293.00	40000.00	902.9
293.00	50000.00	908.6
293.00	60000.00	914.0
293.00	70000.00	919.6
313.00	2100.00	857.0
313.00	3100.00	857.8
313.00	4100.00	858.7
313.00	5000.00	859.6
313.00	10100.00	863.9
313.00	20000.00	871.5
313.00	30000.00	878.7

313.00	40000.00	885.2
313.00	50000.00	891.6
313.00	60000.00	897.5
313.00	70000.00	902.9
333.00	2100.00	835.1
333.00	3100.00	836.0
333.00	4100.00	837.0
333.00	5000.00	838.0
333.00	10100.00	842.7
333.00	20000.00	851.8
333.00	30000.00	859.4
333.00	40000.00	867.0
333.00	50000.00	874.2
333.00	60000.00	880.8
333.00	70000.00	886.7
353.00	2100.00	813.1
353.00	3100.00	814.2
353.00	4100.00	815.4
353.00	5000.00	816.5
353.00	10100.00	822.3
353.00	20000.00	832.3
353.00	30000.00	841.2
353.00	40000.00	849.5
353.00	50000.00	857.0
353.00	60000.00	864.3
353.00	70000.00	871.2
373.00	2100.00	790.7
373.00	3100.00	792.1
373.00	4100.00	793.4
373.00	5000.00	794.7
373.00	10100.00	801.4
373.00	20000.00	812.9
373.00	30000.00	823.1
373.00	40000.00	832.3
373.00	50000.00	840.7
373.00	60000.00	848.2
373.00	70000.00	855.7
393.00	2100.00	767.6
393.00	3100.00	769.4
393.00	4100.00	770.9
393.00	5000.00	772.5
393.00	10100.00	780.0
393.00	20000.00	793.0
393.00	30000.00	804.5

393.00	40000.00	814.6
393.00	50000.00	824.0
393.00	60000.00	832.6
393.00	70000.00	841.0
413.00	2100.00	743.0
413.00	3100.00	745.1
413.00	4100.00	747.0
413.00	5000.00	748.8
413.00	10100.00	758.0
413.00	20000.00	773.2
413.00	30000.00	786.2
413.00	40000.00	797.5
413.00	50000.00	807.8
413.00	60000.00	817.2
413.00	70000.00	825.8
433.00	2100.00	716.7
433.00	3100.00	719.4
433.00	4100.00	721.8
433.00	5000.00	724.0
433.00	10100.00	735.4
433.00	20000.00	753.0
433.00	30000.00	767.8
433.00	40000.00	780.3
433.00	50000.00	791.6
433.00	60000.00	801.7
433.00	70000.00	811.0
448.00	2100.00	696.0
448.00	3100.00	699.2
448.00	4100.00	702.1
448.00	5000.00	704.8
448.00	10100.00	717.8
448.00	20000.00	738.0
448.00	30000.00	754.2
448.00	40000.00	767.8
448.00	50000.00	779.8
448.00	60000.00	790.6
448.00	70000.00	800.3
468.00	2100.00	666.9
468.00	3100.00	670.7
468.00	4100.00	674.3
468.00	5000.00	677.8
468.00	10100.00	693.2
468.00	20000.00	717.0
468.00	30000.00	735.1

468.00	40000.00	750.3
468.00	50000.00	763.6
468.00	60000.00	775.5
468.00	70000.00	786.1

Reference

https://www.doi.org/10.1016/j.fluid.2016.09.021

Speed of sound, m/s

Temperature, K - Liquid	Pressure, kPa - Liquid	Speed of sound, m/s - Liquid
283.15	101.00	1371.6
283.15	1112.00	1376.8
283.15	2281.00	1382.4
283.15	4616.00	1393.2
283.15	6766.00	1403.3
283.15	9100.00	1413.6
283.15	11628.00	1424.5
283.15	14278.00	1436.0
283.15	15957.00	1443.4
283.15	18556.00	1454.0
283.15	20823.00	1463.0
283.15	23405.00	1473.4
298.15	101.00	1299.9
298.15	888.00	1305.0
298.15	1246.00	1305.8
298.15	2254.00	1311.8
298.15	2506.00	1312.2
298.15	4580.00	1322.5
298.15	4719.00	1323.9
298.15	6991.00	1334.4
298.15	7131.00	1335.5
298.15	9327.00	1346.2
298.15	9335.00	1346.2
298.15	9408.00	1346.0
298.15	11563.00	1355.8
298.15	11640.00	1357.0
298.15	14137.00	1368.5
298.15	14317.00	1368.6
298.15	15927.00	1375.9
298.15	16524.00	1379.1
298.15	18655.00	1388.6

298.15	18844.00	1389.0
298.15	20826.00	1398.1
298.15	21001.00	1398.6
298.15	23151.00	1407.9
298.15	23834.00	1410.7
298.15	25699.00	1418.5
298.15	26172.00	1420.5
298.15	28369.00	1428.5
298.15	101.00	1300.2
313.15	101.00	1230.8
313.15	2047.00	1241.3
313.15	3268.00	1247.8
313.15	5111.00	1257.8
313.15	7199.00	1268.7
313.15	9383.00	1280.0
313.15	11613.00	1291.3
313.15	14139.00	1303.7
313.15	16386.00	1314.6
313.15	18686.00	1325.5
313.15	21242.00	1337.2
313.15	23254.00	1346.4
313.15	24384.00	1351.3
313.15	25607.00	1357.2
313.15	25608.00	1357.3
313.15	28210.00	1368.6
333.15	101.00	1142.4
333.15	1260.00	1148.0
333.15	2426.00	1155.0
333.15	5026.00	1170.5
333.15	7135.00	1182.9
333.15	9195.00	1194.5
333.15	11729.00	1208.4
333.15	14011.00	1220.6
333.15	16310.00	1232.7
333.15	18687.00	1244.8
333.15	20059.00	1251.8
333.15	21112.00	1257.2
333.15	23196.00	1267.4
333.15	25517.00	1278.7
333.15	28165.00	1287.7
Reference	https	s://www.doi.org/10.1016/j.jct.2004.04.013

Reference

https://www.doi.org/10.1016/j.jct.2004.04.013

29815.10 283.21 1498.11 24857.00 283.20 1479.03 20203.80 283.20 1460.21 15331.80 283.20 1439.87 10233.80 283.20 1418.25 5280.10 283.20 1395.99 102.10 283.20 1372.03 30106.10 298.20 1436.88 25017.80 298.20 1415.76 20104.10 298.20 1394.27 14866.50 298.20 1371.03 10068.60 298.20 1349.48 5421.70 298.20 1326.99 84.20 298.20 1299.74 29980.00 313.20 1375.67 25204.40 313.20 1354.82 20194.50 313.20 1332.15	Pressure, kPa	Temperature, K	Speed of sound, m/s
20203.80 283.20 1460.21 15331.80 283.20 1439.87 10233.80 283.20 1418.25 5280.10 283.20 1395.99 102.10 283.20 1372.03 30106.10 298.20 1436.88 25017.80 298.20 1415.76 20104.10 298.20 1394.27 14866.50 298.20 1371.03 10068.60 298.20 1349.48 5421.70 298.20 1326.99 84.20 298.20 1299.74 29980.00 313.20 1375.67 25204.40 313.20 1354.82 20194.50 313.20 1332.15	29815.10	283.21	1498.11
15331.80 283.20 1439.87 10233.80 283.20 1418.25 5280.10 283.20 1395.99 102.10 283.20 1372.03 30106.10 298.20 1436.88 25017.80 298.20 1415.76 20104.10 298.20 1394.27 14866.50 298.20 1371.03 10068.60 298.20 1349.48 5421.70 298.20 1326.99 84.20 298.20 1299.74 29980.00 313.20 1375.67 25204.40 313.20 1354.82 20194.50 313.20 1332.15	24857.00	283.20	1479.03
10233.80 283.20 1418.25 5280.10 283.20 1395.99 102.10 283.20 1372.03 30106.10 298.20 1436.88 25017.80 298.20 1415.76 20104.10 298.20 1394.27 14866.50 298.20 1371.03 10068.60 298.20 1349.48 5421.70 298.20 1326.99 84.20 298.20 1299.74 29980.00 313.20 1375.67 25204.40 313.20 1354.82 20194.50 313.20 1332.15	20203.80	283.20	1460.21
5280.10 283.20 1395.99 102.10 283.20 1372.03 30106.10 298.20 1436.88 25017.80 298.20 1415.76 20104.10 298.20 1394.27 14866.50 298.20 1371.03 10068.60 298.20 1349.48 5421.70 298.20 1326.99 84.20 298.20 1299.74 29980.00 313.20 1375.67 25204.40 313.20 1354.82 20194.50 313.20 1332.15	15331.80	283.20	1439.87
102.10 283.20 1372.03 30106.10 298.20 1436.88 25017.80 298.20 1415.76 20104.10 298.20 1394.27 14866.50 298.20 1371.03 10068.60 298.20 1349.48 5421.70 298.20 1326.99 84.20 298.20 1299.74 29980.00 313.20 1375.67 25204.40 313.20 1354.82 20194.50 313.20 1332.15	10233.80	283.20	1418.25
30106.10 298.20 1436.88 25017.80 298.20 1415.76 20104.10 298.20 1394.27 14866.50 298.20 1371.03 10068.60 298.20 1349.48 5421.70 298.20 1326.99 84.20 298.20 1299.74 29980.00 313.20 1375.67 25204.40 313.20 1354.82 20194.50 313.20 1332.15	5280.10	283.20	1395.99
25017.80 298.20 1415.76 20104.10 298.20 1394.27 14866.50 298.20 1371.03 10068.60 298.20 1349.48 5421.70 298.20 1326.99 84.20 298.20 1299.74 29980.00 313.20 1375.67 25204.40 313.20 1354.82 20194.50 313.20 1332.15	102.10	283.20	1372.03
20104.10 298.20 1394.27 14866.50 298.20 1371.03 10068.60 298.20 1349.48 5421.70 298.20 1326.99 84.20 298.20 1299.74 29980.00 313.20 1375.67 25204.40 313.20 1354.82 20194.50 313.20 1332.15	30106.10	298.20	1436.88
14866.50 298.20 1371.03 10068.60 298.20 1349.48 5421.70 298.20 1326.99 84.20 298.20 1299.74 29980.00 313.20 1375.67 25204.40 313.20 1354.82 20194.50 313.20 1332.15	25017.80	298.20	1415.76
10068.60 298.20 1349.48 5421.70 298.20 1326.99 84.20 298.20 1299.74 29980.00 313.20 1375.67 25204.40 313.20 1354.82 20194.50 313.20 1332.15	20104.10	298.20	1394.27
5421.70 298.20 1326.99 84.20 298.20 1299.74 29980.00 313.20 1375.67 25204.40 313.20 1354.82 20194.50 313.20 1332.15	14866.50	298.20	1371.03
84.20 298.20 1299.74 29980.00 313.20 1375.67 25204.40 313.20 1354.82 20194.50 313.20 1332.15	10068.60	298.20	1349.48
29980.00 313.20 1375.67 25204.40 313.20 1354.82 20194.50 313.20 1332.15	5421.70	298.20	1326.99
25204.40 313.20 1354.82 20194.50 313.20 1332.15	84.20	298.20	1299.74
20194.50 313.20 1332.15	29980.00	313.20	1375.67
	25204.40	313.20	1354.82
1700100	20194.50	313.20	1332.15
15331.60 313.20 1309.02	15331.60	313.20	1309.02
10140.00 313.20 1283.5	10140.00	313.20	1283.5
5536.50 313.20 1259.76	5536.50	313.20	1259.76
61.20 313.20 1230.41	61.20	313.20	1230.41
30145.60 333.21 1299.17	30145.60	333.21	1299.17
24756.40 333.21 1273.95	24756.40	333.21	1273.95
19600.70 333.21 1248.51	19600.70	333.21	1248.51
15038.40 333.21 1225.05	15038.40	333.21	1225.05
10149.20 333.21 1198.3	10149.20	333.21	1198.3
5378.80 333.21 1171.44	5378.80	333.21	1171.44
153.70 333.21 1139.68	153.70	333.21	1139.68
30063.00 353.21 1225.96	30063.00	353.21	1225.96
24679.70 353.21 1198.74	24679.70	353.21	1198.74
19917.50 353.20 1173.19	19917.50	353.20	1173.19
15092.20 353.20 1146.64	15092.20	353.20	1146.64
10006.90 353.21 1116.2	10006.90	353.21	1116.2
5094.90 353.21 1084.94	5094.90	353.21	1084.94
172.30 353.21 1052.25	172.30	353.21	1052.25

Sources

Excess Molar Enthalpies and Excess	https://www.doi.org/10.1021/je025625m
Molar Volumes of the Ternary System Agtigitah செரிப்பட்டி at நூர்கும் Dilution	https://www.doi.org/10.1021/je4001894
gar.OnganineSelveen Dissoyved in Three Recogningendery សូវាមិលនៅលេខ pressure	https://www.doi.org/10.1016/j.jct.2013.08.022
Renet enthalawat beerzenes (limida lanic	
ितितिविड विध्वितिति के Short Linear Alkyl Side तिन्द्रिक्ष कि मार्ट्सिया कर्ने देशी प्रकार के मार्ट्सिया कर्ने हैं। प्रकार कर्मिया कर्ने कर्मिया कर्ने कर्मिया कर्ने कर्मिया कर्ने कर्मिया कर	https://www.doi.org/10.1016/j.jct.2007.01.004
พงศ์เซียส์ใหม่คนาว Alcoholy ให้เปลี่ยสใหม่ใช้เคาตา Systems: ให้เปลี่ยสใหม่ใหม่ใหม่ใหม่ใหม่ใหม่ใหม่ใหม่ใหม่ใหม่	https://www.doi.org/10.1016/j.fluid.2006.10.013
fe1;2fAstatoBohleegethanRubid:	https://www.doi.org/10.1021/je901071x
Rensiliando Ministeries of Exercises and Formation of Property and Tomoral Company of the Property of the Prop	https://www.doi.org/10.1021/je600578u
is other transfer and refractive Index	
atዊଡ଼ିଆ ଫୋକ୍ଟେଡ଼ ମିଳ୍ଫେଡ଼ିଆ Mixture of Dibexyl ው met ተጀመረ ከተመደረ ከ	https://www.doi.org/10.1016/j.jct.2005.02.012 -based
मानुभार कामक्र प्रमानिश्चित्र विकास का	https://www.doi.org/10.1021/je400635d
SUMPRINTED A WEST STREET	https://www.doi.org/10.1016/j.fluid.2012.09.013
PROPERTY CONTRACTOR OF THE PROPERTY OF THE PRO	https://www.doi.org/10.1016/j.jct.2014.12.031
(methane + Herring of the state	https://www.doi.org/10.1021/je5004719
West a bridge of the state of t	
Solution as his little de lution in (Dimethy) of the mass in the little de lution in (Dimethy) of the lution of th	https://www.doi.org/10.1021/je400076x
printed Visagive Senaration of Chemine Senar	https://www.doi.org/10.1021/je050488p
Publiki gaza gareguza bakke wega and	https://www.doi.org/10.1016/j.jct.2014.12.023
thermodynamic parameters in a ព ីខ្មែរទ ាក់ ក្ រៀមថ្ងៃ១ខ្មែរ iguid based on	https://www.doi.org/10.1021/je700591h
бу Бұлқтар еттуңтесепьдіргічтеге пе,	https://www.doi.org/10.1016/j.fluid.2013.12.002
bindisyenyeng in bynsyenology yet + Benzalusiyade ex qoş zo olulusu kipa:	https://www.doi.org/10.1016/j.jct.2006.07.022
binary mixtures of Nepsimemonits of activity moesticinate	https://www.doi.org/10.1016/j.jct.2012.03.005
avintiniapoliusionifor oteeniqo selute s: e na seatenaviau i onio liquidulid	https://www.doi.org/10.1016/j.fluid.2013.01.027
1-butyl-1-methylmyraelidinium	https://www.doi.org/10.1016/j.jct.2005.03.019
Wist Die Barel Waser bemetentenzene,	https://www.doi.org/10.1016/j.fluid.2005.04.021
Hitter of the control	https://www.doi.org/10.1016/j.jct.2018.05.017
general et la	https://www.doi.org/10.1016/j.fluid.2007.06.001
which an showers and the lower difference of the lower	https://www.doi.org/10.1016/j.fluid.2017.04.008
SERVENDE STANDARD STANDARD SERVENCE OF	https://www.doi.org/10.1007/s10765-010-0768-y
SUPPLIES BY BY THE SOUTH OF THE BY TH	https://www.doi.org/10.1016/j.tca.2006.03.012
EXAMENTE BACKMESTE TENDER TO 318.15	https://www.doi.org/10.1016/j.jct.2011.05.022
3-methyl-N-butylpyridinium	https://www.doi.org/10.1021/acs.jced.7b00206
Al Al' Diporazinahic/pagpantulalyaal\pha	anharamidata "
RESUMBLED BEING RETHAND REPORTED	https://www.doi.org/10.1016/j.jct.2018.05.003 https://www.doi.org/10.1016/j.tca.2016.05.011 https://www.doi.org/10.1021/je800579i
Breed a section (Reasonage) 1 Ms.	https://www.doi.org/10.1016/j.tca.2016.05.011
ENTONIAR CONCERTING THE PROPERTY OF THE PROPER	po.,,
Bingrangh Trungry Systemscohlsoamyl	https://www.doi.org/10.1021/acs.jced.6b00733
Messing and a supplied the supplied of the sup	https://www.doi.org/10.1021/je9008443
	https://www.doi.org/10.1016/j.jct.2012.01.016
中的中央的一个中央的一个中央的一个中央的一个中央的一个中央的一个中央的一个中央的	https://www.doi.org/10.1021/je0604277
Besa Buengungsphale and 1-Isobutenyl-3-methylimidazolium	
Tetrafluoroborate Ionic Liquids:	

```
Liquid-Liquid Equilibria for Binary
                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je034033g
   Liquid-Liquid Equilibria for Dillary
Mixtures of Water + Benzene, +
There paysiqaber president and present and president as a supply of the binary systems
(Name tyledia binary in the president and p
                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2010.12.021
                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2004.01.001
                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.fluid.2012.08.004
    Hitrasani mandi mis connections in binary Manure sum differential minum propanol,
                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.fluid.2007.07.016
  Hardine Harding Hardin
                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/acs.jced.5b00011
                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2013.07.004
                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.fluid.2018.06.013
                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/je100652b
                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/je7002447
                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je034162x
                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/je800842z
                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2011.05.009
                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je700449z
                                                                                                                                                                                                                                                                       https://www.doi.org/10.1007/s10765-015-1922-3
The substance of the su
                                                                                                                                                                                                                                                                     https://www.doi.org/10.1021/je800915d
                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.fluid.2016.07.004
                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2013.10.029
                                                                                                                                                                                                                                                                       https://www.doi.org/10.1007/s10765-010-0861-2
    ลังคโกษณฑละ + chlorobenzene) ternary
พิเมินต์ รังผู้เหมียนเอโตบะเกษณฑล 3ased
Tatrafhoroborotos คลุป Toluene:
Experimental and theoretical study on
                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je901065e
                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2013.01.005
    infinite dilution activity coefficients of https://www.doi.org/10.1021/je0602925
Tribesyltetradecyl Phosphonium lonic
Lightsyltetradecyl Phosphonium lonic loni
  https://www.doi.org/10.1016/j.jct.2013.02.006
                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2014.12.022
      Coefficients at Infinite Dilution of
      Organic Compounds in 1-Propyl
     Boronic Acid-3-Alkylimidazolium
     Bromide and
```

1-Propenyl-3-alkylimidazolium Bromide Using Inverse Gas Chromatography:

Effects of the presence of ethylacetate https://www.doi.org/10.1016/j.jct.2007.02.007 or benzene on the densities and Densities and Densities applying assisters for the https://www.doi.org/10.1021/je0600799 Texname Synthems of an active the synthems of an active synthems of an active synthems of a control of the synthems of the sy Relegates Solvents of Folial and Noting of Solvents of Folial and Noting of Solvents of Folial and Noting of Solvents of Folial and Solvents of Folial and Solvents of Solvent https://www.doi.org/10.1016/j.jct.2011.02.012 https://www.doi.org/10.1016/j.jct.2010.10.026
st.ieiinito.civistienito Intips://www.doi.org/10.1016/j.jct.2015.06.003
Intips://www.doi.org/10.1016/j.jct.2015.06.003
Intips://www.doi.org/10.1016/j.jct.2017.03.004
Intips://www.doi.org/10.1021/je100077z
Intips://www.doi.org/10.1021/je100077z
Intips://www.doi.org/10.1016/j.jct.2008.11.007
Intips://www.doi.org/10.1016/j.jct.2015.05.022
Intips://www.doi.org/10.1016/j.jct.2015.05.022
Intips://www.doi.org/10.1016/j.jct.2015.05.022
Intips://www.doi.org/10.1016/j.jct.2015.05.022
Intips://www.doi.org/10.1021/acs.jced.8b000219
Intips://www.doi.org/10.1021/acs.jced.8b00001
Intips://www.doi.org/10.1021/acs.jced.8b00001
Intips://www.doi.org/10.1016/j.jct.2007.11.002
Intips://www.doi.org/10.1016/j.jct.2007.11.002
Intips://www.doi.org/10.1016/j.jct.2007.11.002
Intips://www.doi.org/10.1016/j.jct.2007.11.002
Intips://www.doi.org/10.1016/j.jct.2007.11.002
Intips://www.doi.org/10.1016/j.jct.2007.11.002
Intips://www.doi.org/10.1016/j.jct.2007.11.002
Intips://www.doi.org/10.1016/j.jct.2006.06.003
Intips://www.doi.org/10.1016/j.jct.2006.06.003
Intips://www.doi.org/10.1016/j.jct.2006.06.005
Intips://www.doi.org/10.1016/j.jct.2006.06.005
Intips://www.doi.org/10.1016/j.jct.2006.06.005
Intips://www.doi.org/10.1016/j.jct.2006.06.005
Intips://www.doi.org/10.1016/j.jct.2015.07.046
Intips://www.doi.org/10.1016/j.jct.2015.07.046
Intips://www.doi.org/10.1016/j.jct.2015.07.046
Intips://www.doi.org/10.1016/j.jct.2015.07.046
Intips://www.doi.org/10.1016/j.jct.2015.07.046
Intips://www.doi.org/10.1016/j.jct.2015.07.046
Intips://www.doi.org/10.1016/j.jct.2015.07.046
Intips://www.doi.org/10.1016/j.jct.2015.07. 1-Butyl-3-methylimidazolium Tetrafluoroborate Using Gas-Liquid

Chromatography:

Activity coefficients at infinite dilution and physicochemical properties for Departies and Visags visas of Princeronic Liquid Mixtures of Trichloroethylene

GETALLINE STATE AND THE STATE AND https://www.doi.org/10.1016/j.jct.2019.05

systems tassed on activity coefficients
syntime dialization wind is too discount of the synthesis o

https://www.doi.org/10.1016/j.jct.2012.01.019 https://www.doi.org/10.1021/je034203p https://www.doi.org/10.1016/j.fluid.2014.06.02
https://www.doi.org/10.1016/j.fluid.2014.06.02
https://www.doi.org/10.1016/j.fluid.2014.06.02
https://www.doi.org/10.1016/j.fc.2009.07.017
https://www.doi.org/10.1016/j.fc.2009.07.017
https://www.doi.org/10.1016/j.fc.2009.07.017
https://www.doi.org/10.1016/j.fc.2009.07.018
https://www.doi.org/10.1016/j.fc.2009.07.019
https://www.doi.org/10.1016/j.fc.2009.07.019
https://www.doi.org/10.1016/j.fc.2009.07.023
https://www.doi.org/10.1016/j.fc.2009.07.023
https://www.doi.org/10.1016/j.fc.2009.07.023
https://www.doi.org/10.1016/j.fluid.2004.12.00
https://www.doi.org/10.1016/j.fluid.2004.12.00
https://www.doi.org/10.1016/j.fluid.2014.06.02
https://www.doi.org/10.1016/j.fluid.2014.06.02 https://www.doi.org/10.1016/j.fluid.2014.06.020 https://www.doi.org/10.1016/j.tca.2009.07.017 https://www.doi.org/10.1021/acs.jced.7b00191 https://www.doi.org/10.1016/j.fluid.2004.12.005 https://www.doi.org/10.1021/acs.jced.6b00970 https://www.doi.org/10.1016/j.fluid.2014.06.024 https://www.doi.org/10.1016/j.jct.2013.12.024 https://www.doi.org/10.1016/j.tca.2017.05.005 Introcurse of the properties o https://www.doi.org/10.1016/j.fluid.2013.09.044

(Vapour + liquid) equilibria of ternary systems with ionic liquids using ត្រឹមនាន់ទាស់មាន្យជាថៃភាសាកាន់លើប៉ូម៉ែង)hy: coefficients at infinite dilution for Velumets់ទាងសទស់លេ សង់មេខារមកពេខាយការc Malarokanintegastirana inyainatarbons nen-polar-rygrodatoensigtiite diution tengskames scor organic axilytesand tengskames scor organic axilytesand the sale of the binary systems and the binary systems and the binary or or organic and the binary or or organic and the binary of the binary or or organic and the binary of the binary or organic and the binary organic and the binary or or organic and the binary organic and the binary organic and the binary or organic and the binary organic an Measurament of the promise Salutes and was like mentioned Eticalitation of Excess Molar Principal Etical Expenses Molar Principal Etical Etic Excess Molar Enthalpies for Binary and Ternary Mixtures containing Cyclic Paresities Median Parameter Mixtures Containing Cyclic Paresities Median Parameter Mixtures Paresities Mixtures Paresities Mixtures Paresities Par

Bensities and volumetric properties of In the state of th {[4empy][Tf2N] + [emim][DCA]} ionic liquid mixture:

https://www.doi.org/10.1016/j.jct.2010.03.023 https://www.doi.org/10.1016/j.jct.2013.08.030 https://www.doi.org/10.1016/j.fluid.2012.09.007 Figure 17-butyl-1-methylmorpholinium http://www.doi.org/10.1016/j.jct.2017.01.016

https://www.doi.org/10.1016/j.jct.2017.01.016

https://www.doi.org/10.1016/j.jct.2017.01.016

https://www.doi.org/10.1016/j.jct.2017.01.016 Malansylaninteractions in binararbons mixity encontaining interplations:
Little and the first of https://www.doi.org/10.1016/j.tca.2007.12.006 https://www.doi.org/10.1021/je020195l https://www.doi.org/10.1016/j.fluid.2012.05.006 https://www.doi.org/10.1016/j.jct.2013.04.011 https://www.doi.org/10.1021/je900890u https://www.doi.org/10.1016/j.jct.2014.07.016 The state of the s https://www.doi.org/10.1021/je1012444 https://www.doi.org/10.1021/je200637v https://www.doi.org/10.1016/j.jct.2004.05.001 https://www.doi.org/10.1021/je3010535 https://www.doi.org/10.1021/acs.jced.6b00893 http://pubs.acs.org/doi/abs/10.1021/ci990307l Thermodynamic properties of mixtures https://www.doi.org/10.1016/j.fluid.2005.07.008 Thermodynamic properties of mixtures containing ionic liquids Vapor pressite spectation you define into of Refrestive lade per the Binamy Systems specially with the result of the resul https://www.doi.org/10.1016/j.jct.2008.07.009

Separation of Benzene from Linear https://www.doi.org/10.1021/je1001544 Alkanes (C6-C9) Using
Pletaigas Monartinacise Binary Mixtures
ethtisyllandare wide Borkene,
ethtisyllandare wide Borkene,
ethioty meditable is but the tisen of
had using beid are a Agus que souly to n
Marsharing so Disterne on Different and
Different Solventia bindary differen
Different Solventia bindary differen
on the tisen of Alkanes (C6-C9) Using https://www.doi.org/10.1021/je900689m https://www.doi.org/10.1021/acs.jced.6b00164 https://www.doi.org/10.1021/acs.jced.5b00395 https://www.doi.org/10.1016/j.jct.2012.03.015 https://www.doi.org/10.1021/je101114r Herman Equilibries of the control of T-Alkyl-3-methylimidazolium

Reasing wijhtig study of high war bons:
systems comprising an (ionic liquid +
food war to specific and control of the surrement of VLE and contro https://www.doi.org/10.1016/j.fluid.2012.10.007 https://www.doi.org/10.1007/s10765-006-0095-5 The common and the control of the co https://www.doi.org/10.1016/j.jct.2013.10.026 https://www.doi.org/10.1016/j.fluid.2018.01.022 **CO2**eFirmanded Steenes: Activity coefficients at infinite dilution Activity coefficients at infinite dilution and physicochemical properties for togardives (kersand hereophysidahic Reperties Databank) only) pyridinium sollar Enthalpies for Binary Systems white the precision of phase and Cycloalkanes Using Morphatian of cartivity for efficients and Cycloalkanes Using Morphatian of cartivity for efficients and cycloalkanes Using Morphatian of cartivity for efficients and efficient strike properties are the precision of phase and cycloalkanes using Morphatian of cartivity for efficients at the prediction of phase and cycloalkanes using Morphatian of cartivity for efficients at the prediction of phase and the prediction of phase and the prediction of phase activity is efficients and the prediction of phase activity is efficient and the product of the prediction of phase activity is efficient and the product of the prediction of phase activity is efficient and the product of the prediction of phase activity is efficient and the product of the prediction of phase activity is efficient and the product of the prediction of phase activity is efficient and the product of the prediction of phase activity is efficient and the product of the prediction of phase activity is efficient and the product of the prediction of phase activity is efficient and the product of the prediction of phase activity is efficient and the product of the prediction of phase activity is efficient and the product of the prediction of phase activity is efficient and the product of the prediction of phase activity is efficient and the product of the prediction of phase activity is efficient and the product of the prediction of phase activity is efficient and the product of the prod https://www.doi.org/10.1016/j.jct.2011.04.018 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=651 https://www.doi.org/10.1016/j.fluid.2019.03.023 https://www.doi.org/10.1016/j.jct.2008.01.004 https://www.doi.org/10.1016/j.fluid.2014.03.006 https://www.doi.org/10.1016/j.jct.2015.05.014 Pressures of some Deuterated Agtivity Apolitic length of the listing by the listi https://www.doi.org/10.1016/j.jct.2012.01.010 https://www.doi.org/10.1016/j.tca.2011.12.023 https://www.doi.org/10.1016/j.jct.2018.01.003 https://www.doi.org/10.1016/j.fluid.2013.07.053 https://www.doi.org/10.1016/j.jct.2005.01.007 https://www.doi.org/10.1021/je900194v https://www.doi.org/10.1016/j.fluid.2010.10.008 https://www.doi.org/10.1007/s10765-009-0667-2 https://www.doi.org/10.1016/j.jct.2008.12.005 https://www.doi.org/10.1016/j.fluid.2015.01.002 https://www.doi.org/10.1016/j.fluid.2010.04.010 coefficients at infinite dilution for the

ternary systems with ionic liquids:

Liquid viscosities of benzene, https://www.doi.org/10.1016/j.fluid.2007.08.010 n-tetradecane, and benzene + https://www.doi.org/10.1021/acs.jced.7b00699 Mean utwoene and Correlation in father https://www.doi.org/10.1016/j.jct.2015.02.024 + https://www.doi.org/10.1021/je0499519 creame solutes and with the wife + https://www.doi.org/10.1021/je5010565

Adjust plent and allyl Alcohol + https://www.doi.org/10.1021/je5010565

Adjust plent plent in the representation of the properties of th of organic solutes in the ionic liquid Adikty Saethiciantia at diffinite pilytion of his age of the solution o https://www.doi.org/10.1021/acs.jced.8b00600 https://www.doi.org/10.1021/je0500375 https://www.doi.org/10.1021/je049681u https://www.doi.org/10.1021/je049681u

Fit halp reason primary systems of ylentifies and excess https://www.doi.org/10.1021/je800043a

Fit halp reason primary systems of ylentifies and https://www.doi.org/10.1021/je800043a

https://www.doi.org/10.1016/j.jct.2005.12.005

https://www.doi.org/10.1016/j.jct.2014.01.022

https://www.doi.org/10.1016/j.jct.2014.01.022

https://www.doi.org/10.1016/j.jct.2016.06.028

https://www.doi.org/10.1016/j.fluid.2017.06.00

https://www.doi.org/10.1016/j.fluid.2017.06.00

https://www.doi.org/10.1016/j.fluid.2017.06.00

https://www.doi.org/10.1016/j.fluid.2017.06.00

https://www.doi.org/10.1016/j.fluid.2017.06.00

https://www.doi.org/10.1016/j.fluid.2017.06.00

https://www.doi.org/10.1016/j.fluid.2017.06.00 https://www.doi.org/10.1016/j.fluid.2017.06.001 Tolerand អនុការការមួយជាលាប់វាទេ(liquid yairusus) ឧត្តបម្រៀតគេ of {methanol + beinarie | Actual yairusus | Actual yairus https://www.doi.org/10.1016/j.fluid.2011.02.022 https://www.doi.org/10.1021/je800376f https://www.doi.org/10.1016/j.fluid.2010.01.026 https://www.doi.org/10.1016/j.jct.2013.05.011 https://www.doi.org/10.1021/je900686n https://www.doi.org/10.1016/j.fluid.2018.01.019 Thin the all things for organic solutes in texter items in the project of the pr https://www.doi.org/10.1016/j.fluid.2013.10.033 https://www.doi.org/10.1016/j.fluid.2014.11.020 https://www.doi.org/10.1021/je100908f https://www.doi.org/10.1021/je101008y https://www.doi.org/10.1016/j.jct.2011.01.011 https://www.doi.org/10.1021/acs.jced.7b00511 https://www.doi.org/10.1016/j.fluid.2015.06.046 https://www.doi.org/10.1016/j.fluid.2012.12.025 https://www.doi.org/10.1021/je501111d https://www.doi.org/10.1016/j.fluid.2006.03.015 https://www.doi.org/10.1016/j.jct.2018.02.014 https://www.doi.org/10.1021/je030130y https://www.doi.org/10.1016/j.jct.2017.07.012 https://www.doi.org/10.1016/j.jct.2010.12.020

```
Measurement and Correlation of Bubble Point Pressure in (CO2 + C6H6), torder on 1970; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980; 1980
       Measurement and Correlation of
                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/je900312z
        Bubble Point Pressure in (CO2 + C6H6),
                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.fluid.2008.09.005
   Sofid Liquid Phase Equilibria of N.N'-[1,3-Phenylenebis (methylene)]bis (phosphoramidic Tormyrophynamicanal feorogene)]bis (phosphoramidicanal feorogene)
                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.fluid.2018.03.021
    Imidazolium-Based Ionic Liquids and Weakilei Organic Overnys Irlei y Behavine Goursteel Camperatures Using Street Everne Goursteel Everne Goursteel Everne Goursteel Everne Goursteel Everne Google Indiana Control of Providing The Web Control of Providing The Web Control of Providing The Gourst Indiana Control of Providing The Gourst Indiana Control of The Control o
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/je100701w
                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/je060395n
                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/je900324s
                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/je060170c
                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2004.07.010
                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1007/s10765-011-0997-8
                                                                                                                                                                                                                                                                                              http://www.ddbst.com/en/EED/VLE/VLE%20Acetonitrile%3BAcetone%3BBenzene%3BMetha
                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.jct.2017.10.003
       on activity coefficients at infinite
        Splubility of pyrene in simple and
                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.fluid.2009.04.007
     mixedbeelve្សាត់ នៅខ្មាញនៅ dazolium
ទីត្រាវិធីនៅពីស្រួច គ្រឹក្រិត្ត មិន្ត្រិច្ច alkanes by https://www.doi.org/10.1016/j.jct.2010.04.022
solvent extraction with
        1-ethylpyridinium ethylsulfate ionic
       liquid:
```

The use of ionic liquids for separation https://www.doi.org/10.1016/j.jct.2018.07.024 of binary hydrocarbons mixtures based The man had him you at a most sure in the test of binary hydrocarbons mixtures based The man had been supposed in the mixture of the compressibilities for Binary Mixtures The compressibilities for Binary Mixtures The compressibilities for Binary Mixtures are the compressibilities for Binary Mixtures are the compressions. https://www.doi.org/10.1021/je5009558 https://www.doi.org/10.1007/s10765-006-0063-0 https://www.doi.org/10.1016/j.fluid.2005.06.011 TWANTER THE TENT OF THE PROPERTY OF THE PROPER https://www.doi.org/10.1016/j.jct.2010.01.006 http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt tert-alkyl-benzenes. Are these systems Solubulity of Diflutenican in Pure and Binary Solvent Systems: An apparatus for the on-line GC https://www.doi.org/10.1021/acs.jced.8b00632 An apparatus for the on-line GC determination of hydrocarbon solubility in with inverted in the content of hydrocarbon solubility in with inverted in the content of hydrocarbon solubility in with inverted in the content of hydrocarbon solubility in with inverted in the content of hydrocarbon solubility in with inverted in the content of hydrocarbon in the content https://www.doi.org/10.1021/je025609p specific retention volumes and solumes are https://www.doi.org/10.1016/j.fluid.2014.07.034 and xylenes from n-heptane using Grangantiver styleng the plant that the plant the pla and xylenes from n-heptane using HTP: Prince Prin https://www.doi.org/10.1016/j.fluid.2006.03.002 https://www.doi.org/10.1021/acs.jced.5b00770 Patarante Methanolon Renzene +
Herrigus Writes Station action to a

The station of the station o https://www.doi.org/10.1016/j.fluid.2014.01.033 https://www.doi.org/10.1016/j.fluid.2014.12.003
https://www.doi.org/10.1016/j.fluid.2014.12.003
https://www.doi.org/10.1021/je060441j
https://www.doi.org/10.1021/je060441j
https://www.doi.org/10.1021/je060441j
https://www.doi.org/10.1021/je060441j
https://www.doi.org/10.1021/je060441j
https://www.doi.org/10.1021/je00050q
https://www.doi.org/10.1016/j.fluid.2011.01.007
https://www.doi.org/10.1016/j.fluid.2011.01.007
https://www.doi.org/10.1021/je000609f
https://www.doi.org/10.1021/je000609f
https://www.doi.org/10.1016/j.fluid.2007.07.062
https://www.doi.org/10.1016/j.fluid.2007.07.062
https://www.doi.org/10.1016/j.fluid.2015.01.005
https://www.doi.org/10.1016/j.fluid.2015.01.005
https://www.doi.org/10.1016/j.fluid.2015.01.005 https://www.doi.org/10.1016/j.fluid.2014.12.003 https://www.doi.org/10.1016/j.fluid.2015.01.005

https://www.doi.org/10.1016/j.fluid.2015.01.005

https://www.doi.org/10.1016/j.fluid.2015.01.005

https://www.doi.org/10.1016/j.fluid.2009.12.019

https://www.doi.org/10.1016/j.fluid.2009.12.019

https://www.doi.org/10.1016/j.fluid.2009.12.019

https://www.doi.org/10.1016/j.fluid.2007.01.029

https://www.doi.org/10.1016/j.fluid.2017.12.029

https://www.doi.org/10.1016/j.fluid.2017.01.042

https://www.doi.org/10.1016/j.fluid.2017.01.042

https://www.doi.org/10.1016/j.jct.2011.04.008

https://www.doi.org/10.1016/j.jct.2011.04.008 bicyclic guanidinium

superbase-derived protic ionic liquid:

```
Experimental Measurements and Modeling Study of Liquid-Liquid Betanminatiq (water invitational properties) and invitational properties for another service and water in the invitational properties for a supplied and properties for a su
    Experimental Measurements and
                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1021/acs.jced.8b00659
    https://www.doi.org/10.1016/j.jct.2016.0 https://www.doi.org/10.1016/j.jct.2016.0 https://www.doi.org/10.1016/j.jct.2016.0 https://www.doi.org/10.1016/j.jct.2016.0 https://www.doi.org/10.1016/j.jct.2011.1 https://www.doi.org/10.1016/j.jct.201
                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.jct.2016.09.021
                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.jct.2011.11.025
                                                                                                                                                                                                                                                                                               1-hexyl-3-methylimidazolium
1-hexyl-3-methylimidazolium
1-alfylicyanopyridinium-based ionic
liquid in the separation processes:
Solubility of 2-(4-Ethylbenzoyl)benzoic
                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.jct.2016.01.017
                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/je700426k
    Acid in Eleven Organic Solvents
৪০মাত্রধাত্যগুরুষাণ ক্রমাত্রধার্যার দির
tributylmethylammonium
                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.fluid.2016.02.028
     Bickwityucoofficingtsuffontinitaidilution
                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.fluid.2012.04.008
   Solvention and the interest of the interest of
                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.tca.2006.06.018
Etnanol, 2-Propanol, Acetone, Benzene, Massulgaests of activity coefficients at infinite dilution for organic solutes in https://www.doi.org/10.1016/j.fluid.2018.com/sitesersapesan/Molaru/olusesesatile/CRRAS (IDSA) for DA for 
                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.fluid.2018.11.011
                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.fluid.2010.08.016
                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.jct.2014.12.014
                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.jct.2015.12.027
                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.fluid.2009.09.024
                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.tca.2012.04.002
                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.jct.2014.06.006
    propylene glycol and methyl
                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.jct.2009.06.011
  CONOSON CENTRE OF THE MENT OF CHARLES OF MERCHAND CONTROL OF THE CONTROL OF THE CONTROL OF THE CHARLES OF THE CONTROL OF THE C
                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je034204h
                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1021/je800883b
                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1021/je900711h
                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.jct.2009.05.008
     mixtures of (alkane + benzene + [EMpy]
                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.fluid.2006.11.005
     Mason Praicise volumente en bet parte autoriana
   ayatospiethanolesshleroform + benzene
ayatospiethanolesshleroform + benzene
axioriperatal analyse (29184535935) K:
Explering the pica of binelly more than
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.fluid.2010.08.024
```

prediatining By2c opayberops:opane],

2-methyl-2-ene-1-propanol at 303.15 K:

benzene, butan-1-ol, 2-methylpropan-1-ol,

Extraction of benzene from heptane https://www.doi.org/10.1016/j.fluid.2015.12.009 with pyridinium based ionic liquid at https://www.doi.org/10.1016/j.fluid.2009.06.015 [2938:\$5, 69015h 4 [Dia fic) [18] 169) Kalcohol + TEMPS://www.doi.org/10.1016/j.fluid.2009.06.01
hydrocarbon mixtures: Binary and
expass mixtures: Binary and
https://www.doi.org/10.1016/j.jct.2007.10.010
https://www.doi.org/10.1016/j.jct.2005.07.004
BETWEEN CONTROLL TO THE PROPERTY OF THE PROPERTY O https://www.doi.org/10.1016/j.fluid.2010.01.025 https://www.doi.org/10.1021/acs.jced.9b00059 https://www.doi.org/10.1021/je6005604 https://www.doi.org/10.1016/j.fluid.2013.09.048 https://www.doi.org/10.1016/j.fluid.2016.02.006 https://www.doi.org/10.1016/j.jct.2016.07.021 https://www.doi.org/10.1021/je900277m https://www.doi.org/10.1021/je700209v https://www.doi.org/10.1021/je100952p https://www.doi.org/10.1016/j.jct.2007.09.002 https://www.doi.org/10.1016/j.fluid.2018.09.024 https://www.doi.org/10.1021/je050394f EXBESS: PUTINAL DIES OF HER NATURES OF HEXT OF SECRETARIA DE LA COMATICA DEL COMATICA DE LA COMATICA DEL COMATICA DE LA COMATICA DEL COMATICA DEL COMATICA DEL COMATICA DE LA COMATICA DEL COMATICA DE LA COMATICA DEL COMATICA DEL COMATICA DE LA COMATICA DE LA COMATICA DEL COMATICA https://www.doi.org/10.1016/j.jct.2015.01.003 https://www.doi.org/10.1021/je1009812 https://www.doi.org/10.1007/s10765-009-0562-x https://www.doi.org/10.1021/je800846j https://www.doi.org/10.1016/j.jct.2010.06.009 https://www.doi.org/10.1016/j.jct.2008.09.004 https://www.doi.org/10.1021/je8009122 https://www.doi.org/10.1016/j.jct.2017.12.012 http://link.springer.com/article/10.1007/BF02311772 modelling of thermodynamic functions: (Liquid + liquid) phase behavior for systems containing (aromatic + TBA + Hattigligatish equilibrium of ternary systems 1-butyl-3-methylimidazolium Pexamilier obisospities, - Spendatof + Spondien obisospities, - Spendatof - S https://www.doi.org/10.1016/j.jct.2003.11.002 https://www.doi.org/10.1016/j.fluid.2008.01.007 https://www.doi.org/10.1007/s10765-013-1526-8 https://www.doi.org/10.1016/j.jct.2009.08.012 Mytthesser E-E-Typi-I-Reduction Berselvies in Harobenzenes: กับเป็นเลยที่ประชาที่เลยที่อักกับกับกับกับ อันกุลที่เอองสายที่จุดเอที่อักบุ้มกับกับกับกับกับกับ โล้กันการที่สู่ชอกลุกคุณ and 2-Butoxy https://www.doi.org/10.1021/je060229f https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=651 Soldbill graphy lbenzenes and a https://www.doi.org/10.1021/je034235c Model for Predicting the Solubility of Eurinn Granges and lingth along the Solubility of Eurinn Granges and lingth along the ture warmal Energy Changes of Benzene, who be in the solubility of the solution o https://www.doi.org/10.1021/je700276z https://www.doi.org/10.1021/je010317u https://www.doi.org/10.1016/j.jct.2004.03.001 Vacarsireum acceptation kontrenance by the acceptance or entimated provided acceptance or entimated and the acceptance of entimated acceptance or enti https://www.doi.org/10.1016/j.fluid.2016.02.018 https://www.doi.org/10.1016/j.fluid.2016.02.004 https://www.doi.org/10.1016/j.fluid.2005.11.017 https://www.doi.org/10.1016/j.fluid.2004.12.003

```
Molar Excess Volumes and Excess
                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je900237e
   Isentropic Compressibilities of spinointy is an excess lentropic Compressibilities of spinointy is a spinointy in the compressibilities of the pounds in September 19 parties of the spinointy is a spinointy in the spinointy is a spinointy in the spinointy is a spinointy in the spinointy in the spinointy is a spinointy in the spinointy in the spinointy is a spinointy in the spinointy in the spinointy is a spinointy in the spinointy in the spinointy in the spinointy is a spinointy in the spinointy is a spinointy in the spinointy i
                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1021/je100341q
                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2006.05.006
                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.jct.2007.11.009
                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.fluid.2009.08.017
                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.fluid.2015.09.030
    https://www.doi.org/10.1016/j.fluid.2009.03.012
                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1021/je100998r
                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2010.05.017
      at infinite dilution of organic solutes
      Bredictien and measurement of phase
                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.fluid.2013.11.034
     end water with the action of phase of the combined with the combined of the co
                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1021/je200266f
   https://www.doi.org/10.1016/j.fluid.2019.03.022
                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1016/j.jct.2014.05.020
                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.jct.2011.12.006
                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2012.02.032
    HEERSPACE GER CRANDOLATO GUIGNO A CHECKE CALLED CONTROL OF CONTROL
                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1007/s10765-009-0625-z
                                                                                                                                                                                                                                                                                           https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
     ம் தூழ்த்து:
Gas liquid chromatography
                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2010.01.004
     measurements of activity coefficients
Determination เอา เราะ เลของ เกาะ in https://www.doi.org/10.1021/je2013582
  The street in th
                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2010.09.021
At Alkenes rated Alkyl
Beitzen de grificients at Infinite Dilution
of 24 gamis Solwes and Waternita azolium
Thrushow Brischell (1916) Charles at Carrier

Introduced a Waternita College of Bristle (1916) Charles at Carrier

Introduced a Waternita College of Bristle (1916) Charles at Carrier

Introduced a Waternita College of Bristle (1916) Charles at Carrier

Introduced a Waternita College of Bristle (1916) Charles at Carrier

Introduced a Waternita College of Bristle (1916) Charles at Carrier

Introduced a Waternita College of Carrier

Introduced a Carrier of Carrier (1916) Charles at Carrier

Introduced a Carrier of Carrier (1916) Charles and Carrier of Carrier (1916) 
                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/acs.jced.5b00980
                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2018.07.028
                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1021/acs.jced.9b00411
                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.8b00125
                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2011.01.018
```

temperatures 293.15-323.15K:

Diffusion Coefficients of Organic https://www.doi.org/10.1021/je700539w Compounds at Infinite Dilution in Maxword-dequise Equilibrium particular in the Systems of CO2 + Tenering of the Infinite Dilution in Maxword-dequise Equilibrium in the Systems of CO2 + Tenering entering particular in the Systems of CO2 + Tenering entering particular in the Systems of CO2 + Tenering entering particular in the Systems of CO2 + Tenering entering and theoretical in the Systems of CO2 + Tenering entering and theoretical interior in the Systems of CO2 + Tenering entering and theoretical interior in the Systems of CO2 + Tenering entering and theoretical interior in the Systems of CO2 + Tenering entering and theoretical interior in the Systems of CO2 + Tenering entering and the Systems of CO2 + Tenering entering entering and the Systems of CO2 + Tenering entering e Compounds at Infinite Dilution in https://www.doi.org/10.1016/j.jct.2018.09.003 https://www.doi.org/10.1016/j.fluid.2014.06.021 Threfree 1032 and three tights control of international process the process of th https://www.doi.org/10.1016/j.jct.2010.12.005 https://www.doi.org/10.1007/s10765-008-0390-4 https://www.doi.org/10.1016/j.jct.2012.01.004 https://www.doi.org/10.1016/j.jct.2013.09.007 https://www.doi.org/10.1016/j.jct.2012.05.017 Interpretability of sufficiency of sufficiency mixtures of sufficiency of suffici https://www.doi.org/10.1021/je0341920 http://webbook.nist.gov/cgi/cbook.cgi?ID=C71432&Units=SI cyclohexane or benzene in the range (293.15 to 323.15) K:

Legend

af: Acentric Factor affp: Proton affinity

aigt: Autoignition Temperature

basg: Gas basicity

cpg: Ideal gas heat capacitycpl: Liquid phase heat capacitycps: Solid phase heat capacity

dm: Dipole Moment

dvisc: Dynamic viscosity

fll: Lower Flammability Limit
flu: Upper Flammability Limit

fpo: Flash Point (Open Cup Method)

gf: Standard Gibbs free energy of formation

gyrad: Radius of Gyration

hcg: Heat of Combustion, Gross form hcn: Heat of Combustion, Net Form

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hsub: Enthalpy of sublimation at standard conditions
 hsubt: Enthalpy of sublimation at a given temperature
 hvap: Enthalpy of vaporization at standard conditions
 hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

nfpaf:NFPA Fire Ratingnfpah:NFPA Health Ratingpc:Critical Pressure

psub: Sublimation pressure

pvap: Vapor pressurerfi: Refractive Indexrhoc: Critical densityrhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

ss: Solid phase molar entropy at standard conditions

tb: Normal Boiling Point Temperaturetbp: Boiling point at given pressure

tc: Critical Temperature

tcondl: Liquid thermal conductivity
tf: Normal melting (fusion) point

tfp: Melting pointvc: Critical Volumevols: Specific Volume

zc: Critical Compressibility

zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/12-667-8/Benzene.pdf

Generated by Cheméo on 2025-12-20 11:13:09.104202802 +0000 UTC m=+5977386.634243468.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.