Propane, 1-nitro-

Other names:	1-NP
	1-Nitropan
	1-Nitropropane
	N-Nitropropane
	NiPar S-10
	n-C3H7NO2
Inchi:	InChI=1S/C3H7NO2/c1-2-3-4(5)6/h2-3H2,1H3
InchiKey:	JSZOAYXJRCEYSX-UHFFFAOYSA-N
Formula:	C3H7NO2
SMILES:	CCC[N+](=O)[O-]
Mol. weight [g/mol]:	89.09
CAS:	108-03-2

Physical Properties

Property code	Value	Unit	Source
af	0.3760		KDB
chl	-2012.10 ± 1.20	kJ/mol	NIST Webbook
chl	-2014.00 ± 0.40	kJ/mol	NIST Webbook
chl	-2000.00	kJ/mol	NIST Webbook
chl	-2013.40 ± 2.60	kJ/mol	NIST Webbook
gf	9.93	kJ/mol	Joback Method
hf	-116.01	kJ/mol	Joback Method
hfl	-167.60 ± 2.60	kJ/mol	NIST Webbook
hfl	-168.80 ± 1.30	kJ/mol	NIST Webbook
hfl	-167.00 ± 0.40	kJ/mol	NIST Webbook
hfus	14.89	kJ/mol	Joback Method
hvap	43.39 ± 0.42	kJ/mol	NIST Webbook
hvap	43.90	kJ/mol	NIST Webbook
ie	10.78 ± 0.03	eV	NIST Webbook
ie	10.75 ± 0.01	eV	NIST Webbook
ie	10.81 ± 0.03	eV	NIST Webbook
ie	10.95	eV	NIST Webbook
log10ws	-0.80		Aqueous Solubility Prediction Method
log10ws	-0.80		Estimated Solubility Method
logp	0.673		Crippen Method

mcvol 70.550 ml/mol	McGowan Method
nfpaf %!d(float64=2)	KDB
nfpah %!d(float64=1)	KDB
nfpas %!d(float64=3)	KDB
pc 4000.00 kPa	KDB
rinpol 710.00	NIST Webbook
rinpol 707.16	NIST Webbook
rinpol 702.92	NIST Webbook
rinpol 708.43	NIST Webbook
rinpol 725.00	NIST Webbook
rinpol 686.00	NIST Webbook
rinpol 725.00	NIST Webbook
rinpol 707.00	NIST Webbook
rinpol 708.43	NIST Webbook
rinpol 709.77	NIST Webbook
rinpol 711.18	NIST Webbook
rinpol 702.10	NIST Webbook
rinpol 702.42	NIST Webbook
rinpol 702.92	NIST Webbook
rinpol 703.52	NIST Webbook
rinpol 704.26	NIST Webbook
rinpol 705.13	NIST Webbook
rinpol 706.13	NIST Webbook
rinpol 707.16	NIST Webbook
rinpol 660.50	NIST Webbook
rinpol 709.97	NIST Webbook
rinpol 667.00	NIST Webbook
rinpol 678.00	NIST Webbook
rinpol 724.00	NIST Webbook
rinpol 683.00	NIST Webbook
rinpol 724.00	NIST Webbook
rinpol 661.90	NIST Webbook
rinpol 665.00	NIST Webbook
rinpol 724.00	NIST Webbook
rinpol 662.00	NIST Webbook
rinpol 678.00	NIST Webbook
rinpol 667.00	NIST Webbook
rinpol 712.00	NIST Webbook
rinpol 724.00	NIST Webbook
rinpol 724.00	NIST Webbook
rinpol 723.00	NIST Webbook
rinpol 686.00	NIST Webbook
rinpol 677.00	NIST Webbook
rinpol 710.00	NIST Webbook

rinpol	707.00		NIST Webbook
rinpol	708.00		NIST Webbook
rinpol	711.00		NIST Webbook
rinpol	711.00		NIST Webbook
rinpol	712.00		NIST Webbook
rinpol	709.00		NIST Webbook
rinpol	711.00		NIST Webbook
rinpol	715.00		NIST Webbook
rinpol	706.00		NIST Webbook
rinpol	711.00		NIST Webbook
rinpol	712.00		NIST Webbook
rinpol	712.00		NIST Webbook
rinpol	725.00		NIST Webbook
rinpol	708.00		NIST Webbook
rinpol	708.00		NIST Webbook
rinpol	686.00		NIST Webbook
ripol	1246.10		NIST Webbook
ripol	1220.00		NIST Webbook
ripol	1218.00		NIST Webbook
ripol	1220.00		NIST Webbook
ripol	1251.00		NIST Webbook
ripol	1218.00		NIST Webbook
ripol	1279.00		NIST Webbook
ripol	1216.40		NIST Webbook
ripol	1241.40		NIST Webbook
ripol	1237.80		NIST Webbook
ripol	1233.80		NIST Webbook
ripol	1230.40		NIST Webbook
ripol	1227.20		NIST Webbook
ripol	1251.60		NIST Webbook
ripol	1248.40		NIST Webbook
tb	404.70	K	KDB
tc	606.00	К	KDB
tf	168.59 ± 0.05	К	NIST Webbook
tf	169.16 ± 0.06	К	NIST Webbook
tf	165.00	К	KDB
VC	0.285	m3/kmol	Joback Method

Temperature Dependent Properties

Property code

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.52908e+01
Coeff. B	-3.95030e+03
Coeff. C	-3.43730e+01
Temperature range (K), min.	297.67
Temperature range (K), max.	430.22

Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C^*ln(T) + D^*T^2$
Coeff. A	6.95825e+01
Coeff. B	-7.26354e+03
Coeff. C	-7.96077e+00
Coeff. D	4.74813e-06
Temperature range (K), min.	169.16
Temperature range (K), max.	605.00

Sources

Activity coefficients at infinite dilution, physicochemical and thermodynamic at infinite allution for organic solutes Activity coefficients at infinite and provide the solution and provide the sol

Studio of interaction between organic anumbari meraction between organic contraversand mompiae dirationic and with an addition of the state of organic compounds in Four New Thrazon medice and difficite between of Organic Compounds in Four New Thrazon medice and difficition of a compounds the state of the state of the state of the state coefficients measurements for organic the medice and the state of the

IntegrationIntegrationcoefficients measurements for organicsbrings dynamics and activity liquidcoefficients measurements for organicsbrings dynamics and activity liquidcoefficients measurementscoefficients measurementsstanding dynamicscoefficients measurementscoefficients measurementscoefficientscoefficientscoefficientscoefficientscoefficientscoefficientscoefficientscoefficientscoefficientscoefficientscoefficientscoefficientscoefficientscoefficientscoefficientscoefficientscoefficientscoefficients</

trifluorotris(perfluoroethyl)phosphate: separation on investigation of limiting

[P8,8,8,8][[NTf2] jonic liquid: New ionic liquid [P4,4,4,4][NTf2] in New fonctiquid [24,4,4,4][NT12] in bio-butanol extraction on investigation of bio-butan-1-ol from water phase Manguaement of entiviews extingions at infinite ellution in Artickay Configurate at Infinite at infinite ellution in

A Branchistor and an a superior provides a superior of the second second

of Organic Compounds in Fines of the second interaction-selectivity in separation Actorise Sophised on Athlinitadiwityon actorises Solutes and Water in Tabulore Gonificients of Arganic Germany most in the visit of a solution of the so Chains of Three to Five Carbons:

https://www.doi.org/10.1016/j.jct.2015.05.022 physicochemical and thermodynamic phosened gran in a sole tais in of the product https://www.doi.org/10.1016/j.jct.2012.05.017 https://www.doi.org/10.1016/j.jct.2017.11.017

> https://www.doi.org/10.1016/j.jct.2017.10.003 https://www.doi.org/10.1016/j.fluid.2014.11.020 https://www.doi.org/10.1016/j.jct.2015.05.014 https://www.doi.org/10.1021/je200195q

https://www.doi.org/10.1016/j.jct.2016.08.008

https://www.doi.org/10.1016/j.fluid.2017.06.001

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1431

https://www.doi.org/10.1016/j.fluid.2018.07.028

https://www.doi.org/10.1016/j.fluid.2018.09.024

https://www.doi.org/10.1016/j.jct.2007.01.004

https://www.doi.org/10.1021/je800658v

https://www.doi.org/10.1016/j.jct.2016.01.017

https://www.doi.org/10.1021/je800754w

https://www.doi.org/10.1016/j.jct.2016.12.016

https://www.doi.org/10.1016/j.jct.2013.08.030

https://www.doi.org/10.1016/j.jct.2012.03.005

https://www.doi.org/10.1016/j.fluid.2007.05.017

https://www.doi.org/10.1016/j.jct.2018.02.014

https://www.doi.org/10.1021/acs.jced.5b00980

https://www.doi.org/10.1021/je9003178

https://www.doi.org/10.1021/je4001894

http://link.springer.com/article/10.1007/BF02311772

Activity coefficients at infinite dilution and physicochemical properties for **Sequence** solutes and water in the ionic

Againite sontfisienta wareiniterdilutine of organize solutos vietnyl)-in the solution of organize solutos in the solution of organize solutos and solution of the solution of the solution at optimies all in the solution of the solution of organize compounds as solution of organize compounds as solution of organize compounds as solution of the solut thiocyanate, [HiQuin][SCN] using GLC: Partition Coefficients of Organic

Compounds in Four New the initial with a state of the state of the

Legend

https://www.doi.org/10.1016/j.jct.2012.03.015

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1431

649 thic solutes and water in the ionic liquid.
https://www.cheric.org/research/kdb/hcprop/sho

749 rinnebtal and the pretical study of ium
https://www.doi.org/10.1016/j.fluid.2014.06.021

749 rinnebtal and the pretical study of ium
https://www.doi.org/10.1016/j.fluid.2014.06.021

749 rinnebtal and the pretical study of ium
https://www.doi.org/10.1016/j.fluid.2014.06.021

749 rinnebtal and the pretical study of ium
https://www.doi.org/10.1021/je101161d

749 rinnebtal and the pretical study of ium
https://www.doi.org/10.1016/j.jct.2016.07.017

749 rinnebtal and support of a study of ium
https://www.doi.org/10.1016/j.fluid.2018.06.013

749 rinnebtal and support of a study of ium
https://www.doi.org/10.1016/j.fluid.2018.06.013

749 rinnebtal and support of a study of ium
https://www.doi.org/10.1016/j.fluid.2018.06.013

749 rinnebtal and support of a study of ium
https://www.doi.org/10.1021/je500050p

749 rinnebtal and support of a study of ium of ium
https://www.doi.org/10.1016/j.jct.2012.08.016

749 rinnebtal and support of a study of ium of ium
https://www.doi.org/10.1016/j.jct.2015.02.023

740 rinnebtal and support of a study of ium of ium
https://www.doi.org/10.1016/j.jct.2015.02.023

740 rinnebtal and support of a study of ium of ium
https://www.doi.org/10.1016/j.jct.2015.02.023

740 rinnebtal and support of a study of http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt https://www.doi.org/10.1016/j.jct.2013.09.007 https://www.doi.org/10.1016/j.jct.2013.07.004 https://www.doi.org/10.1021/je300692s https://www.doi.org/10.1016/j.jct.2018.07.024 https://www.doi.org/10.1016/j.jct.2013.02.004 http://pubs.acs.org/doi/abs/10.1021/ci990307I https://www.doi.org/10.1021/je200637v Separationanth mixtures based on https://www.doi.org/10.1016/j.fluid.2017.12.029

https://www.doi.org/10.1016/j.fluid.2016.02.004

af:	Acentric Factor
chl:	Standard liquid enthalpy of combustion
срд:	Ideal gas heat capacity
gf:	Standard Gibbs free energy of formation
hf:	Enthalpy of formation at standard conditions
hfl:	Liquid phase enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions
hvap:	Enthalpy of vaporization at standard conditions
hvapt:	Enthalpy of vaporization at a given temperature
ie:	Ionization energy
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
nfpaf:	NFPA Fire Rating
nfpah:	NFPA Health Rating
nfpas:	NFPA Safety Rating
pc:	Critical Pressure
pvap:	Vapor pressure

rhol:	Liquid Density
rinpol:	Non-polar retention indices
ripol:	Polar retention indices
tb:	Normal Boiling Point Temperature
tc:	Critical Temperature
tf:	Normal melting (fusion) point
vc:	Critical Volume

Latest version available from:

https://www.chemeo.com/cid/11-547-2/Propane-1-nitro.pdf

Generated by Cheméo on 2024-04-30 07:30:03.088845339 +0000 UTC m=+16751452.009422688.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.